Второе начало термодинамики. Обратимые и необратимые процессы. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Второе начало термодинамики. Обратимые и необратимые процессы.



Из формулы (8.6.1) видно, что к.п.д. тепловой машины меньше единицы. Наилучшей была бы машина, с к.п.д., равным единице. Такая машина могла бы полностью превращать в работу всю полученную от некоторого тела теплоту, ничего не отдавая холодильнику. Многочисленные опыты показали невозможность создания подобной машины. К такому выводу впервые пришел Сади Карно в 1824 г. Изучив условия работы тепловых машин, он доказал, что для производства работы тепловой машиной нужно не менее двух источников теплоты с различными температурами. В дальнейшем это детально было изучено Р. Клаузиусом (1850 г.) и В.Кельвином (1852 г.), которые сформулировали второе начало термодинамики.

Формулировка Клаузиуса: Тепло не может самопроизвольно переходить от менее нагретого к более нагретому телу без каких-либо изменений в системе. Т.е. невозможен процесс, единственным конечным результатом которого является передача энергии в форме теплоты от менее нагретого тела к более нагретому.

Из этого определения не вытекает, что тепло не может передаваться от менее нагретого к более нагретому телу. Это происходит в любых холодильных установках, но передача тепла здесь не является конечным результатом, так как при этом совершается работа.

Формулировка Томсона (Кельвина): Невозможно преобразовать в работу всю теплоту, взятую от тела с однородной температурой, не производя никаких других изменений в состоянии системы. Т.е. невозможен процесс, единственным конечным результатом которого является превращение всей теплоты, полученной от некоторого тела, в эквивалентную ей работу.

Здесь не вытекает, что теплота не может быть полностью обращена в работу. Например, при изотермическом процессе (dU=0) теплота полностью обращается в работу, но этот результат не является единственным, конечным, так как здесь еще происходит расширение газа.

Видно, что приведенные формулировки эквивалентны.

Второе начало термодинамики был окончательно сформулирован тогда, когда окончились неудачей все попытки создать двигатель, который бы обращал в работу всю полученную им теплоту, не вызывая при этом никаких других изменений состояния система - вечный двигатель второго рода. Это двигатель, имеющий к.п.д. 100 %. Поэтому другая формулировка второго начала термодинамики: невозможен перпетуум мобиле второго рода, т.е. такой периодически действующий двигатель, который получал бы тепло от одного резервуара и превращал эту теплоту полностью в работу.

Второе начало термодинамики позволяет разделить все термодинамические процессы на обратимые и необратимые. Если в результате какого-либо процесса система переходит из состояния А в другое состояние В и если возможно вернуть ее хотя бы одним способом в исходное состояние А и притом так, чтобы во всех остальных телах не произошло никаких изменений, то этот процесс называется обратимым. Если же это сделать невозможно, то процесс называется необратимым. Обратимый процесс можно было бы осуществить в том случае, если прямое и обратное направления его протекания были бы равновозможны и равноценны.

Обратимыми процессами являются процессы, протекающие с очень малой скоростью, в идеальном случае бесконечно медленно. В реальных условиях процессы протекают с конечной скоростью, и поэтому их можно считать обратимыми только с определенной точностью. Наоборот, необратимость является характерным свойством, вытекающим из самой природы тепловых процессов. Примером необратимых процессов являются все процессы, сопровождающиеся трением, процессы теплообмена при конечной разности температур, процессы растворения и диффузии. Эти все процессы в одном направлении протекают самопроизвольно, "сами собой", а для совершения каждого из этих процессов в обратном направлении необходимо, чтобы параллельно происходил какой-то другой, компенсирующий процесс. Следовательно, в земных условиях у событий имеется естественный ход, естественное направление.

Второе начало термодинамики определяет направление протекания термодинамических процессов и тем самым дает ответ на вопрос, какие процессы в природе могут протекать самопроизвольно. Оно указывает на необратимость процесса передачи одной формы энергии – работы в другую – теплоту. Работа – форма передачи энергии упорядоченного движения тела как целого; теплота – форма передачи энергии неупорядоченного хаотического движения. Упорядоченное движение может переходить в неупорядоченное самопроизвольно. Обратный переход возможен лишь при условии совершения работы внешними силами.

 

Цикл Карно.

 

 
 

Анализируя работу тепловых двигателей, Карно пришел к выводу, что наивыгоднейшим процессом является обратимый круговой процесс, состоящий из двух изотерм и двух адиабат, так как он характеризуется наибольшим коэффициентом полезного действия. Такой цикл получил название цикла Карно.

Цикл Карно – прямой круговой процесс, при котором выполненная системой работа максимальна.

Пусть некоторая система может вступать в тепловой контакт с двумя тепловыми резервуарами, температуры которых Т1 и Т2, а теплоемкости бесконечно велики (то есть добавление или отнятие некоторого количество теплоты не изменяет температуры). Примем, что система представляет собой идеальный газ, находящийся в цилиндрическом сосуде под поршнем (рис. 8.7.). Считаем, что стенки и поршень теплонепроницаемы.

Пусть сначала система, находящаяся в состоянии с (р1, V1, Т1), приводится в тепловой контакт с первым резервуаром. При сообщении системе теплоты Q1 совершается работа против внешних сил, численно равная Q1, газ расширяется до объема V2.

Затем цилиндр переставляется на изолирующую подставку. Газу предоставляется возможность и дальше расширяться до объема V3, чтобы температура стала Т2.

Переведем цилиндр с поршнем в тепловой контакт со вторым резервуаром с температурой Т2, причем внешние тела совершают работу Q2 над системой, так что объем становится V4.

Вновь изолируем систему и уменьшаем объем до первоначального значения V1, так что температура повысится от Т2 до Т1.

Если все четыре процесса являются обратимыми, то все наши рассуждения справедливы, и система действительно вернется в исходное состояние с (р1, V1, Т1).

Итак, описанный цикл состоит из двух изотермических (1®2 и 3®4) и двух адиабатических расширений и сжатий (2®3 и 4®1) (см. рис.8.8.). Машина, совершающая цикл Карно, называется идеальной тепловой машиной.

 
 

Работа, совершаемая при изотермическом расширении:

; А1=Q1. (8.8.1)

При адиабатическом расширении работа совершается за счет убыли внутренней энергии системы, т.к. Q’=0:

Работа, совершаемая над системой при изотермическом сжатии:

; А2=Q2. (8.8.2)

Работа при адиабатическом сжатии: А'' =–DU = СV2–Т1).

Подсчитаем КПД идеальной тепловой машины.

(8.8.3)

Запишем уравнения Пуассона для двух адиабатических процессов:

Взяв их отношение, получим: . Выразив в формуле (8.8.3) через и сократив на ln , получим:

. (8.8.4)

Отсюда сформулируем первую теорему Карно: коэффициент полезного действия обратимого цикла Карно не зависит от природы рабочего тела и является функцией только абсолютных температур нагревателя и холодильника.

Вторая теорема Карно: любая тепловая машина, работающая при данных значениях температур нагревателя и холодильника, не может иметь большего КПД, чем машина, работающая по обратимому циклу Карно при тех же значениях температур нагревателя и холодильника.

.

Термический КПД произвольного обратимого цикла

,

где Тmax и Tmin – экстремальные значения температуры нагревателя и холодильника, участвующих в осуществлении рассматриваемого цикла.



Поделиться:


Последнее изменение этой страницы: 2016-12-30; просмотров: 639; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.123.32 (0.007 с.)