Принцип построения и характеристики шифра AES. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Принцип построения и характеристики шифра AES.



AES (Advanced Encryption Standard)

Новый американский стандарт шифрования FIPS-197.

Данный алгоритм шифрования является не только полностью общедоступным, но и принятым как наилучший среди представленных на открытом конкурсе в США в 1997 г.

шифр AES:

- открыто опубликованный;

- симметричный блоковый шифр, допускающим длины ключа 128, 192 и 256 бит;

- предназначен как для аппаратной, так и для программной реализации;

- доступен для свободного использования в любых продуктах, а значит, не запатентованным.

В ходе исследований не выявлено слабостей

криптоалгоритма;

Характеристики шифра АЕS

1.Может работать быстрее, чем обычный блочный шифр;

2.Может быть реализован на смарт-карте, используя небольшой РАМ и имея небольшое число циклов;

3. Преобразование раунда допускает параллельное выполнение;

4. Не использует арифметических операций, поэтому тип архитектуры процессора не имеет значения;

5. Может быть использован для вычисления МАС-кода и хэш-функции.

 

Данный шифр основан на принципе итерирования (итерирование - повторение какой-либо математической операции, использующее результат предыдущей аналогичной операции) SD-преобразований и использует так называемую архитектуру «квадрат», т. е. все преобразования производятся в рамках одного квадрата.

Текущие данные (в том числе исходное сообщение и получаемая криптограмма) записываются по одному байту (8 бит) в каждую из 16 клеток, что дает общую длину блока шифрования, равную 8x16 -128 бит.

Первое преобразование данного алгоритма выполняется как вычисление обратного элемента в поле GF() по модулю неприводимого полинома + + + х +1, что обеспечивает доказуемую устойчивость шифра по отношению к линейному и дифференциальному криптоанализу, при этом нулевой элемент поля сохраняется без преобразования (рис. 3.16).

 

Следующее преобразование состоит в умножении каждой клетки квадрата, представленной в виде двоичного вектор-столбца (, ), на фиксированную матрицу и добавлении также фиксированного вектор-столбца, причем все операции здесь выполняются в поле GF{2}:

Используемая в этом преобразовании матрица и вектор-столбец сохраняются одинаковыми на всех раундах и не зависят от ключа.

Заметим, что умножение на матрицу и добавление вектора улучшают криптографические свойства шифра для случая, когда в клетках квадрата появляются нулевые элементы.

В качестве очередного преобразования используется побайтовый циклический сдвиг массива сообщений на различное количество байт (клеток), показанный на рис. 3.17.

Следующее преобразование называется перемешиванием столбцов. На этом шаге каждый С-й столбец квадратной матрицы представляется как 4-мерный вектор над полем GF(), и далее производится умножение в этом поле, заданном неприводимым полиномом + + + х +1, на определенную матрицу с элементами из этого же поля:

где элементы, показанные в этой матрице, задаются как элементы поля GF() (т. е. как двоичные последовательности длины 8), что иллюстрируется следующим примером:

Наконец производится сложение с раундовыми ключами, которое выполняется просто как побитное сложение всех элементов последнего квадрата с 128 элементами раундового ключа по модулю 2. После завершения одного раунда все описанные выше операции повторяются с использованием других раундовых ключей. Раундовые ключи вырабатываются из единственного секретного ключа длиной 128, 192 или 256 бит (в зависимости от выбранного режима ифрования) при помощи специальных преобразований, включающих в себя циклические сдвиги и расширения. Количество раундов шифра зависит от выбранного режима его работы и изменяется в пределах от 10 до 14.

Для дешифрования используется последовательность обратных преобразований с обратным порядком следования раундовых ключей, что оказывается вполне возможным, поскольку все операции, выполняемые в каждом раунде, как легко убедиться, обратимы. Однако следует заметить, что в отличие от шифров, основанных на структуре Фейстеля (например, шифр DES), данный шифр должен использовать разные электронные схемы или программы для шифрования и дешифрования соответственно.

Особенности шифра AES

1) AES ориентирован в основном на реализацию с 8-разрядными процессорами;

2) все раундовые преобразования выполняются в конечных полях, что допускает простую реализацию на различных платформах.

Стойкость шифра AES

Очевидно, что перебор всех ключей (даже при их минимальном количестве- 2) оказывается невозможным. Линейный и дифференциальный криптоанализ также практически невозможны вследствие выбора оптимальных процедур преобразований и, в частности, вследствие использования вычисления обратных элементов в конечном поле.

Криптоанализ на основе решения нелинейной системы уравнений над полем GF(2), описывающих шифр, теоретически возможен, в том числе и за счет появления дополнительных уравнений. Однако эта процедура требует необозримо большого вычислительного ресурса. Таким образом, в настоящее время шифр AES можно считать стойким относительно любых известных атак.

Скорость шифрования AES

При программной реализации данный алгоритм наиболее эффективно реализуется на 8- и 32-разрядных платформах. Для типичных ПК скорость шифрования может составлять порядка 1 Мбайт/с - 500 кбайт/с. При аппаратной реализации высокие скорости шифрования (порядка 100 Мбайт/с и выше) потребуют увеличения аппаратных ресурсов и, следовательно, увеличения габаритов устройства.



Поделиться:


Последнее изменение этой страницы: 2016-12-30; просмотров: 1434; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.128.199.210 (0.005 с.)