Возбудимость, проводимость и автоматия миокарда 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Возбудимость, проводимость и автоматия миокарда



Строение и функции проводящей системы сердца

Для сердца характерна способность сокращаться в течение всей жизни человека, не обнаруживая признаков утомления. Долгое время оставался нерешенным вопрос о том, обусловлена ли эта способность нервными влияниями (нейрогенный механизм), или она является собственным свойством сердечной мышцы (миогенный механизм). Еще Леонардо да Винчи писал: «...Про­следи нервы до сердца и посмотри, сообщают ли они движение сердцу или оно движется само собой». В настоящее время твердо установлено, что нейрогенная гипотеза автоматии сердца, спра­ведливая в отношении многих беспозвоночных животных, не при­менима к хордовым и к человеку.

Классический опыт, свидетельствующий в пользу миогенной теории, произвел в середине XIX века X. Станниус. В этом опыте было показано, что при наложении лигатуры на сердце лягушки по границе между венозным синусом (место впадения полых вен) и правым предсердием венозный синус продолжает сокращаться с исходной частотой, а предсердия и желудочек (единственный в трехкамерном сердце земноводных) останавливаются. Через 30-40 секунд сокращения желудочка и предсердий возобновля­ются, но с собственной частотой, меньшей, чем частота сокраще­ний венозного синуса. Иногда возобновление сокращений желу­дочка происходит только после стимуляции в области сердца меж­ду предсердиями и желудочком путем наложения второй лигату­ры по атриовентрикулярной борозде. Наложение еще одной лигатуры в нижней трети желудочка приводит к прекращению сокращений верхушки сердца, в то время как остальные отделы продолжают сокращаться в прежнем ритме. При этом возбуди­мость и сократимость верхушки сердца не нарушаются - в ответ на раздражение (укол иголкой) происходит сокращение.

Позже английский физиолог В. Гаскел показал, что охлажде­ние сравнительно небольшой зоны в области устья полых вен приводит к остановке сердца у млекопитающих. В 1902 г. в России А. А. Кулябко наблюдал восстановление сократительной актив­ности сердца человека, которое извлекли из трупа, поместили в теплый физиологический раствор и некоторое время массиро­вали.

В результате перечисленных экспериментов было доказано существование механизма обеспечения периодической сокра­тительной активности сердца, автономного по отношению к центральной нервной системе и достаточного для поддержания нормального ритма сердечной деятельности. Результаты опытов X. Станниуса и В. Гаскела указывали также на то, что участки сердечной мышцы, ответственные за ее самовозбуждение (очаги автоматии), имеют ограниченную локализацию и находятся, в частности, в правом предсердии, а также на границе предсердий и желудочков. В дальнейшем было установлено, что клеточными элементами, обеспечивающими автоматию сердца являются специализированные кардиомиоциты.

Миогенная природа автоматии сердца в значительной мере является результатом его ранней эмбриональной дифференцировки (зачаток сердца формируется к концу второй недели эмбриогенеза). Тем самым обеспечивается формирование кровеносной системы плода и оптимальный режим снабжения кислородом всех тканей, включая нервную. С другой cтороны, автономность кровеносной системы по отношению к нервной необходима вследствие большой зависимости нервной ткани от уровня доставки кислорода. Прекращение кровоснабжения мозга даже на несколько секунд вызывает резкие функциональные нарушения, которые уже через 4-6 минут приводят к необратимым органическим изменениям в ЦНС. Поэтому зависимость сердечной деятельности и всей системы снабжения организма кислородом от состояния ЦНС резко снизила бы адаптивные возможности организма в условиях действия на него экстремальных факторов среды.

Проводящая система сердца образована специализированными кардиомиоцитами и включает в себя следующие основные структуры (рис.1).

1. Синоатриальный, или синусный, узел располагается на задней стенке правого предсердия вблизи устья верхней полой вены. Он образован Р-клетками, которые посредством Т-клеток связаны между собой и с сократительными кардиомиоцитами предсердий. Этот узел аналогичен синусному узлу холоднокровных (венозный синус как анатомически обособленное место впадения полых вен у теплокровных существует только на ранних стадиях эмбриогенеза, сливаясь в дальнейшем с правывым предсердием). От синоатриального узла в направлении к атриовентрикулярному узлу отходят три межузловых тракта: передний (тракт Бахмана) с отходящим от него к левому предсердию межпредсердным пучком, средний и задний (соответственно тракты Венкебаха и Тореля). Следует отметить, однако, что степень гистологической дифференциации указанных структур от окружающих тканей миокарда у разных людей сильно варьирует.

 

Рис. 1. Проводящая система сердца

ВПВ - верхняя полая вена; НПВ - нижняя полая вена; штриховка - фиб­розная ткань между миокардом предсердий и желудочков; СА- синоатриальный узел; АВ - атриовентрикулярный узел.

Основные проводящие пути: 1 -передний межузловой тракт; 1а - межпредсердпый пучок Бахмана; 2 - средний мсжузловой тракт Венкебаха; 3 - зад­ний можузловой тракт Тореля; 4 - общий ствол предсердно-желудочкового пуч­ка (пучка Гиса}; 5 - правая ножка пучка Гиса; 6 - левая ножка пучка Гиса; 6а - передневерхняя ветвь левой ножки пучка Гиса; 6б - задненижняя ветвь левой ножки пучка Гиса; 7 - субэндокардиальные волокна Пуркинье.

Дополнительные (аномальные) проводящие пути: 8 - пучок Джеймса; 9 - пучки Кента

 

2. Атриовентрикулярное соединение, в котором выделяю три зоны: AN (atrium-nodus) - зона перехода от предсердных кардиомиоцитов к атриовентрикулярному узлу; N (nodus)- атриовентрикулярный узел, расположенный непосредственно над местом прикрепления септальной створки трехстворчатого клапана; NH (nodus-His) - зона перехода от атриовентрикулярного узла к общему стволу пучка Гиса. В атриовентрикулярном соединении обнаруживаются Р-клетки (в меньшем количестве, чем в синусном узле), клетки Пуркинье, а также Т-клетки.

3. Предсердно-желудочковый пучок, или пучок Гиса (описан немецким анатомом В. Гисом в 1893 г.), в норме является единст­венным путем проведения возбуждения от предсердий к желу­дочкам. Он отходит от атриовентрикулярного узла общим стволом и проникает через фиброзную ткань, разделяющую предсердия и желудочки, в межжелудочковую перегородку. Здесь пучок Гиса разделяется на две ножки - правую и левую, идущие к соответствующим желудочкам, причем левая ножка делится на две ветви: передневерхнюю и задненижнюю. Указанные разветвления пуч­ка Гиса проходят под эндокардом, широко ветвятся и заканчива­ются в желудочках сетью субэндокардиальных волокон Пуркинье (описаны чешским физиологом Я. Пуркинье в 1845г.). Основу проводящей системы желудочков (системы Гиса-Пуркинье) со­ставляют клетки Пуркинье, связанные с сократительными кардиомиоцитами посредством Т-клеток.

У некоторых людей встречаются варианты развития, при ко­торых в сердце содержатся дополнительные (аномальные) прово­дящие пути, например пучок Джеймса, соединяющий предсер­дия с нижней частью атриовентрикулярного соединения, пучки Кента, соединяющие предсердия и желудочки. Указанные пути участвуют в возникновении некоторых нарушений сердечного ритма (например, синдрома преждевременного возбуждения желудочков).

В норме возбуждение сердечной мышцы зарождается в си­нусном узле, охватывает миокард предсердий и, пройдя атриовентрикулярное соединение, распространяется по ножкам пучка Гиса и волокнам Пуркинье на миокард желудочков.

Таким образом, нормальный ритм сердца определяется актив­ностью группы Р-клеток синоатриального узла, который назы­вают водителем ритма первого порядка, или истинным пейсмекером (от англ. Pacemaker- «отбивающий шаг»). Кроме клеток синусного узла, автоматия присуща и другим структурам прово­дящей системы сердца. Водитель ритма второго порядка локали­зован в NH-зоне атриовентрикулярного соединения (кардиомиоциты собственно атриовентрикулярного узла автоматией не об­ладают). Водителями ритма третьего порядка являются клетки Пуркинье, входящие в состав проводящей системы желудочков.

Водители ритма распределены в сердце согласно «закону гра­диента автоматии», сформулированному Гаскелом в 1887 г.: сте­пень автоматии пейсмекера тем выше, чем ближе он расположен к синоатриальному узлу. Так, собственная частота ритмической активности клеток синусного узла в норме составляет 60-90 им­пульсов в мин, атриовентрикулярного соединения – 40-60, сис­темы Гиса-Пуркинье – 20-40 импульсов в минуту (в дистальных отделах меньше, чем в проксимальных). Вследствие такого рас­пределения активность нижележащих водителей ритма в норме подавляется синоатриальным узлом. Поэтому водители ритма первого и второго порядков называют латентными (или потенци­альными) пейсмекерами. При снижении активности синусного узла или при нарушении проведения возбуждения к латентным пейсмекерам (как, например, в опыте Станниуса) частота воз­буждений и сокращений сердца определяется активностью води­телей ритма второго или третьего порядка. Кроме того, в патоло­гических условиях электрические импульсы могут генерировать­ся не только клетками проводящей системы сердца, но и сокра­тительными кардиомиоцитами.

Возникшее в синоатриальном узле возбуждение радиально распространяется по миокарду предсердий во все стороны, при­чем из-за асимметрии расположения синусного узла правое пред­сердие возбуждается раньше левого. Значение предсердных спе­циализированных проводящих путей в этом процессе невелико, и их перерезка существенно не нарушает распространение воз­буждения по миокарду, так как скорость проведения по этим пу­тям (0,4-0,8 м/с) почти такая же, как и по сократительным кардиомиоцитам (0,1-0,2 м/с).

В атриовентрикулярном соединении (AN- и N-зоны) скорость проведения возбуждения минимальна - около 0,05 м/с. Поэто­му при переходе возбуждения от предсердий к желудочкам воз­никает задержка проведения импульса на 0,02-0,04 с (примерно столько же времени тратится на проведение возбужения по сис­теме Гиса-Пуркинье, протяженность которой более чем в 10 раз превосходит размеры атриовентрикулярного узла). Атриовентрикулярная задержка, а также низкая скорость проведения возбуждения в предсердиях обеспечивают координацию сокра­щений отделов сердца: желудочки начинают сокращаться только после того, как предсердия закончат нагнетание в них крови. Осо­бые свойства атриовентрикулярного соединения обеспечивают также частичную блокаду проведения импульсов, следующих из предсердий с частотой более 180-200 в 1 мин.

Пройдя атриовентрикулярное соединение, возбуждение продолжает распространяться по проводящей системе желудоч­ков и достигает их сократительных кардиомиоцитов. При этом сначала возбуждается межжелудочковая перегородка, далее - верхушка сердца и в конце цикла - базальные отделы желудоч­ков. В силу особенностей расположения волокон Пуркинье возбуждение папиллярных мышц происходит несколько раньше, чем оно охватывает стенки желудочков. Благодаря этому створки трехстворчатого и митрального клапанов оказываются натянутыми раньше, чем на них начнет действовать сила сокращения желудочков. Общее время охвата желудочков возбуждением составляет 5-10 мс.

Скорость проведения возбуждения по различным участкам миокарда желудочков существенно различна: по пучку Гиса - около 1 м/с, по волокнам Пуркинье - до 4 м/с, по сократительным кардиомиоцитам - около 0,5 м/с. Высокая скорость проведения импульса по проводящей системе желудочков обеспечивает их синхронное возбуждение, что повышает эффективность выполнения насосной функции сердца (повреждение пучка Гиса, например, может привести к потере мощности сокращений миокарда до 50% из-за увеличения длительности асинхронного сокращения вследствие медленного проведения возбуждения по сократительным кардиомиоцитам).

Распространение возбуждения и ход сердечного цикла нарушаться при изменении возбудимости элементов проводящей системы и рабочего миокарда. Все многообразие нарушений работы сердца можно свести к двум основным группам: нарушение образования возбуждения и нарушение его проведения.

Активация локализованных вне синусного узла (эктопических) очагов автоматии может приводить к возникновению экстрасистол - внеочередных по отношению к нормальному синусному ритму, возбуждений (и сокращений) сердца. При суточном наблюдении экстрасистолы регистрируются более чем у половины людей со здоровым сердцем. Увеличение экстрасистол отмечается как при снижении частоты импульсов синусного узла (например, в ночное время у здоровых, а также у спортсменов), так и наоборот, при психоэмоциональном напряжении, употреблении кофе и др.

Нарушения анатомической или функциональной целостности элементов проводящей системы сердца могут приводить к снижению скорости или к прекращению проведения возбуждения по какому-либо участку проводящей системы. Такие состояния называются блокадами проведения и сопровождаются изменениями нормальной последовательности возбуждения отделов сердца. Например, при полной атриовентрикулярной блокаде (прекращении проведения возбуждения через атриовентрикулярное соединение) предсердия и желудочки начинают сокращаться независимо друг от друга (экспериментальной моделью такого состояния является опыт Станниуса). При этом ритм возбуждения предсердий задается синоатриальным узлом, а желудочков - вышедшими из-под контроля латентными пейсмекерами атриовентрикулярного соединения (водителями ритма второго порядка). Если область блокады расположена ниже пейсмекерной области атриовентрикулярного соединения, возбуждение желудочков может происходить в своем собственном (идиовентрикулярном) ритме, задаваемом водителями ритма третьего порядка (система Гиса-Пуркинье). В соответствии с законом градиента автоматии, частота сокращений желудочков при этом снижается (в некоторых случаях до 20 в 1 мин). Столь сильное замедление частоты сокращений может приводить к такому снижению насосной функции сердца, которое поддается коррекции только посредством постоянной электрокардиостимуляции желудочков; последняя осуществляется с помощью имплантированных в серд­це электродов и генератора электрических импульсов - кардио­стимулятора. При этом оптимальной является так называемая физиологическая электрокардиостимуляция, при которой воз­буждения предсердий и желудочков синхронизированы (в про­тивном случае сердечный выброс может снижаться на 30-50%).

Следует отметить, что снижение проводимости не всегда столь сильно отражается на насосной функции сердца. Например, не­полная блокада правой ножки пучка Гиса встречается у некото­рых практически здоровых людей и часто обнаруживается лишь случайно при электрокардиографическом обследовании.

 



Поделиться:


Последнее изменение этой страницы: 2017-01-20; просмотров: 142; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.176.66 (0.01 с.)