Розрахунки під час проектування та конструювання. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Розрахунки під час проектування та конструювання.



У проектуванні використовують такі види розрахунків: геометрич­ні (розрахунок розмірних ланцюгів, координат, зазорів); кінематичні (розрахунок переміщень, швидкостей, прискорень, передаточних чи­сел кінематичних ланцюгів та ін.); динамічні (розрахунок наванта­жень деталей і їхніх змін у часі); розрахунки на міцність та жорст­кість (визначення напружень та деформацій елементів машини в ро­бочих режимах); енергетичні (розрахунки затрат енергії, параметрів енергетичного балансу); техніко–економічні (розрахунки продуктив­ності, вартості, ефективності використання). Якщо кінематичні і ге­ометричні розрахунки, а також розрахунки на міцність та жорсткість відповідальних елементів машини виконуються з достатньою точністю, то інші розрахунки на початковому етапі більш або менш умовні. Це пояснюється тим, що в процесі проектування і конструювання де­які дані, які використовуються в розрахунках, є попередніми і в де­якій мірі наближеними. На кінцевій стадії проектування і конструю­вання всі потрібні види розрахунків повинні виконуватись із достат­ньою точністю.

Той чи інший розрахунок треба виконувати за такою схемою: а) підбір вихідних даних для розрахунку; б) складання розрахунко­вої схеми; в) визначення основних критеріїв роботоздатності об'єкта розрахунку; г) безпосереднє виконання розрахунку; д) формулюван­ня висновків і заключень.

Розрахунки на міцність та жорсткість залежно від їх місця в усьому процесі проектування і конструювання поділяють на проектні та перевірочні.

- Проектні розрахунки використовують для визначення вихідних розмірів деталей чи їхніх елементів, до того ж ці розрахунки в більшос­ті ві падків виконують за спрощеними методиками. Розміри, здобуті в проектному розрахунку,– це основа для вибору форми деталі та її конструктивних елементів і подальшої ув'язки з іншими деталями в конкретному вузлі машини. Інколи доцільно вибирати конструк­тивну форму і розміри деяких деталей машин, керуючись досвідом проектної роботи або беручи до уваги відомі подібні елементи машини, що перевірені в експлуатації.

-Перевірні розрахунки є обов'язковими і найбільш точними. Вони виконуються за потрібними критеріями роботоздатності на кінцевих етапах проектування і конструювання для всіх відповідаль­них деталей машин. Якщо форма і розміри деталі не відповідають критеріям міцності чи жорсткості, то змінюють її розміри або кон­струкцію і повторюють розрахунок. Для деталей високого ступеня відповідальності або деталей складної форми з точно не встановленим характером навантаження доцільно проводити експериментальну перевірку розрахунків.

6. Загальні вимоги до машин, їхніх деталей та вузлів.

-Роботоздатність – поняття, що визначає такий стан машини або довільної її складальної одиниці чи деталі, при якому вона здатна виконувати задані функції з параметрами щодо вимог технічної документації із збереженням міцності, незмінності форми і розмірів, стійкості проти спрацьовування, потрібної жорсткості, тепло–і вібростійкості. Ці показники роботоздатності, порушення яких спричинює вихід з ладу машини чи деталі, називають критеріями роботоздатності.

Роботоздатність деталей машин забезпечується наданням їм від­повідних розмірів і форм, раціональним добором матеріалів для ви­готовлення їх з використанням зміцнюючих технологій, застосуван­ням антикорозійного захисту і відповідного змащування. Роботоздат­ність машин та їхніх деталей може бути оцінена розрахунком або ек­спериментальне.

-Високі експлуатаційні показники машини оцінюють існуючими зразками подібних машин. При збереженні або зменшенні маси і габаритних розмірів нова машина повинна за­безпечувати більш високі продуктивність і ККД, менше споживання енергії, підвищену точність, менші затрати праці на обслуговування і ремонт тощо. Всього цього можна досягнути вдосконаленням конст­руктивної схеми машини, раціональним вибором основних пара­метрів і конструктивних форм, використанням автоматичних систем для регулювання і керування машиною та забезпеченням оптимі–зації робочого режиму.

-Висока надійність – властивість машини, складальної одиниці або деталі виконувати задані функції, зберігаючи при цьому свої експлуатаційні показники в допустимих межах, протягом напе­ред заданого проміжку часу. Показником надійності м0же бути ймовірність безвідказної роботи машини в призначеному інтервалі часу. Чим ближче ймовірність безвідказної роботи до одиниці, тим вище надійність конструкції.

-Безпечність в експлуатації характеризує придатність конструкції машини до нормальної експлуатації протягом визначеного технічною документацією строку служби без аварійних руйнувань, небезпечних для обслуговуючого персоналу, виробничого обладнання, а також інших суміжних об'єктів.

-Технологічність і економічність конструкції машини чи деталі – це найбільша простота і найменші матеріальні затрати при виготовленні. При розробці проекту треба надавати ви­робу такі конструктивні форми і розміри, а також використовувати для його виготовлення такі матеріали і методи їхньої обробки, які забезпечували б мінімальну масу і витрати матеріалу, найбільш спро­щене і економне виробництво з урахуванням загального обсягу ви­готовлення виробів.

-Екологічність машини – здатність її виконувати свої функції без шкідливого впливу на навколишнє середовище. Еколо­гічність при проектуванні і конструюванні досягається такими захо­дами використанням технологічно чистих джерел енергії, запобіган­ням шкідливого забруднення виробничих приміщень, нейтралізацією продуктів робочого процесу машини, відповідною герметизацією робочих об'ємів машини, використанням матеріалів для деталей із урахуванням можливості їх утилізації після виходу з ладу, забезпе­ченням виконання функції машини з низьким рівнем шуму та віб­рації.

7. Критерії роботоздатності машин та їхніх елементів.

-Роботоздатність - стан об'єкта (споруди, машини, деталі і т.ін.), при якому він здатний нормально виконувати задані функції з параметрами, установленими нормативно-технічною документацією (стандартами, технічними умовами і т. ін.. Основними критеріями роботоздатності деталей машин є міцність, жорсткість, стійкість проти спрацювання, вібростійкість, теплостійкість та ін.

-Міцність – здатність деталі чинити опір руйнуванню - оцінюється за номінальними допустимими напругами, за коефіцієнтами запасу міцності та ймовірністю безвідмовної роботи (статичними запасами міцності). Міцність є головним критерієм роботоздатності переважної більшості деталей.

-Жорсткість – здатність деталей чинити опір зміні форми та розмірів під навантаженням.

Розрахунки на стійкість проти спрацьовування передбачають забезпечення рідинного тертя, а це можливе лише при наявності товщини шару мастила, який більший суми мікронерівностей і відхилень форми контактних поверхонь.

-Вібростійкість – здатність конструкцій працювати в потрібному діапазоні режимів без недопустимих коливань. Оскільки існує тенденція зростання швидкостей машин, то явища коливань стають все небезпечнішими, відтак розрахунки на вібростійкість все актуальнішими.

-Теплостійкість – важливий критерій роботоздатності багатьох елементів машин, що полягає у здатності їх не втрачати своїх експлуатаційних показників при змінах температури, оскільки робота багатьох машин супроводжується виділенням теплоти, що пов'язане з робочим процесом в машині та тертям у рухомих спряженнях їхніх деталей. Надмірне тепловиділення знижує роботоздатність деталей машини і погіршує якість їх роботи.

8. Види навантаг.

Навантаження, які діють на окремі елементи машини, поділяють на корисні та власні (шкідливі).

-Корисні навантаження сприяють реалізації маши­ною виробничого процесу. Власні навантаження неми­нуче супроводжують роботу машини і в основному складаються із власної ваги окремих ланок, динамічних сил, сил тертя в з'єднаннях і місцевих сил, спричинених концентрацією навантаження на поверхні контакту деталей. Природно, що не всі сили власної ваги і динамічні сили шкідливі. В машинах ударної (молотах) і вібраційної дії дина­мічні навантаження використовують для здійснення корисного робо­чого процесу. Власна вага може також виконувати позитивну роль (наприклад, противага в підйомно–транспортних машинах) або здій­снювати робочі функції (у гиревих приладах часу).

За характером зміни в часі навантаження в машинах поділяють на постійні і змінні.

-Постійні навантаження – це в більшості випадків сили тиску рідини або газу, навантаження від початкового поперед­нього напруження деталей при їх з'єднанні в процес складання, а також власна вага. До цих же навантажень належать і постійні про­тягом значного періоду або циклу роботи навантаження, характерні для робочого режиму експлуатації машини. Власна вага має основне значення в транспортних і підйомно–транспортних машинах, в уста­новках для буріння глибоких свердловин та інших машинах. Такі навантаження суттєві для опор важких зрівноважених роторів.

-Змінні навантаження можуть бути спричинені не­рівномірністю робочого процесу в машинах–двигунах (наприклад, у двигунах внутрішнього згоряння); внутрішньою динамікою робо­ти (запуск у роботу, гальмування, реверсування, незрівноваженість, неточність виготовлення); зміною робочого процесу машини через збільшення чи зменшення сил корисного опору та ін.
Змінні навантаження можуть бути стаціонарними або нестаціо­нарними. Нестаціонарні – це навантаження із змінними параметра­ми (амплітудою і частотою). Значна кількість машин працює в умовах нестаціонарного навантаження їхніх елементів.

9. Розподіл навантаг у часі та типові режими навантаження елементів машин.

Навантаження елементів машини може бути постій­ним у часі або змінюватись у широких межах протягом усього періоду експлуатації машини. Покажемо можливий характер зміни наванта­ження у вигляді графіків, побудованих у системі координат наванта­ження F (або обертовий момент Т) – час t.

На рис. 2.1, а зображений графік постійного навантаження. В мо­мент пуску машини навантаження F спочатку швидко зростає, а по­тім практично залишається постійним протягом значного часу, на­буваючи номінального значення FНОМ, яке є вихідним для виконання розрахунків на міцність.

Для багатьох машин характерним є змінне навантаження протя­гом усього періоду експлуатації (рис. 2.1, б).

Щоб оцінити інтенсивність такого складного режиму навантаження і зробити кількісне порівняння різних режимів навантаження елементів машини, треба поділити весь строк служби h на окремі періоди роботи, або цикли hi, протягом яких навантаження F наближено зберігається постійним. Якщо впорядкувати всі цикли роботи машини за зменшенням наванта­ження, то можна здобути циклограму навантаження елементів маши­ни протягом заданого періоду її експлуатації (рис.2.2 а). Тривалість циклу роботи машини з однаковими навантаженнями можна гранично зменшити, що дозволить характеризувати режим навантаження більш точно. У цьому разі матимемо не ступеневий, а плавний характер циклограми навантаження, до того ж її можна побудувати в системі координат навантаження F– число циклів nц появи навантаження даного рівня (рис. 2.2, б). Навантаження різ­них рівнів відбувається за сумарне число циклів n роботи машини. За циклограмою на рис 2.2, б можна стверджувати, що навантажен­ня рівня Fі з'являється пці разів протягом усього періоду експлуата­ції машини.

На практиці можна використовувати циклограми навантаження, що побудовані в системі координат відносних величин Fі/F (Ті/Т) і пці/n Такі циклограми показані на рис.2.2,в. Вони побудовані для різних режимів навантаження елементів машини і дозволяють характеризувати відносну інтенсив­ність цих режимів. Так, режим за графіком 1 є більш інтенсивним, ніж режим навантаження за гра­фіком 2, бо для режиму 1 перева­жають навантаження більш висо­кого рівня.

Побудова циклограми наванта­ження елементів конкретної маши­ни – дуже складний і трудомісткий процес. Для цього треба зареєстру­вати неперервний характер зміни навантаження протягом значного періоду експлуатації машини. Та­ка реєстрація виконується спеці­альною апаратурою із записом на­вантаження на магнітну стрічку або за осцилограмами. Подальша статистична обробка зареєстрованих навантажень дозволяє побудува­ти циклограму навантаження конкретної деталі.

У нашій країні і за кордоном стосовно технологічних і транспорт­них машин, таких як металообробні верстати, автомобілі, трактори, гірничі і підйомно–транспортні машини, екскаватори, сільськогоспо­дарська техніка та ін., проведене вивчення навантажень у функції часу і накопичена деяка узагальнена інформація про діючі наванта­ження. Це дало можливість дістати типові режими навантаження машин за відомими із курсу теорії ймовірностей законами розподілу випадкових величин.

На рис. 2.3 наведені графіки типових режимів навантаження ма­шин, що побудовані в системі відносних координат Fі/F і пці/n. Тут взято такі позначення: П – постійний режим навантаження; В – важкий режим; СР – середній рівноймовірний режим; СН – середній нормальний режим, Л – легкий режим навантаження.

Рис. 2.3. Графіки типових режимів на­вантаження елементів машин

Для важкого режиму характерний високий рівень навантаження протягом значного періоду експлуатації машини, а для легкого ре­жиму – низький рівень навантаження протягом цього ж періоду.

Гірничі машини здебільшого експлуатуються при важкому режи­мі навантаження, а транспортні – при середньому рівноймовірному або середньому нормальному. Для металообробних верстатів харак­терним є легкий режим навантаження. Різні види підйомно–транспорт­ного обладнання можуть працювати на режимах навантаження від легкого до важкого.

Постійний режим є найнапруженішим, бо машина протягом прак­тично всього періоду її експлуатації знаходиться під дією постійного номінального навантаження. За постійний режим навантаження можна брати такий режим, за яким навантаження елементів змінюється у межах до 20 % від номінального Fном. На практиці постійний ре­жим навантаження зустрічається значно рідше, ніж інші.

При побудові графіків типових режимів навантаження F є макси­мальним, довгочасно діючим. Довгочасно діючими навантаженнями називають такі наванта–ження із їхнього загального спектра, сумарне число появи яких nц ≥ 5∙104. Максимальні навантаження Fmах. для яких число появи за час експлуатації машини пц < 5∙104, вважають короткочасно діючими і при розрахунку деталей на втому до уваги не беруть. За цими навантаженнями виконують розрахунки деталей на статичну міцність.

Відповідність режиму навантаження тієї чи іншої машини або де­талі одному з типових режимів на рис.2.3 встановлюється за подіб­ністю форми графіків і за середнім значенням навантаження. За роз­рахунковий треба брати типовий режим, який найбільш близький до фактичного в області навантажень високого рівня.

11. Зміна напруг у часі.

Під час дії на деталь постійного за модулем та напрямом наванта­ження в ній виникають постійні напруження. Якщо модуль або на­прям навантаження щодо деталі змінюється в часі, то і напруження в деталі будуть мінятися в часі. Наприклад, змінні в часі напруження будуть тоді, коли навантаження постійне, але змінюється положення деталі щодо напряму навантаження (постійна за модулем і напрямом поперечна сила на вісь, що обертається, спричинює в перерізах цієї осі змінні в часі напруження).
Змінні напруження, що виникають у деталях машин, у більшості випадків змінюються в часі періодично.
На рис. 4.3 показаний графік можливої періодичної зміни нормального σ чи дотичного τ на­пруження в часі t.

Сукупність всіх напружень за один період зміни їх називається циклом напружень. Цикл напружень характеризується максимальним σmax і мінімальним σminнапруженнями, а також амплітудою напружень σа та коефіцієнтом асиметрії циклу R. Середнє напруження σm циклу дорівнює алгебраїчній півсумі максимального і мінімального напружень:

σm = 0,5(σmax + σmin). (13)

Амплітуда напружень σa циклу –це алгебраїчна піврізниця максимального та мінімального напружень:

σa = 0,5(σmax – σmin). (14)

Відношення мінімального напруження циклу до максимального, взяте з відповідним знаком, називається коефіцієнтом асиметрії циклу

R = σminmax. (15)

Практичне застосування в розрахунках деталей машин знаходять: постійне напруженняm = σ; σа = 0; R = 1), симетричнийm = 0; σа = σmax; R = –1) іпульсуючийm = 0,5σmax; σа = 0,5·σmax; R = 0) цикли напружень. Усі інші цикли напружень можуть бути зведені до певної сукупності названих трьох циклів.

Відомо, що змінні напруження спричинюють явища втоми матері­алу деталей. Характеристикою міцності матеріалу в цьому випадку виступає границя витривалості σR (відповідно σ–1, τ–1 для симетрич­ного і σ0, τ0 для пульсуючого циклів).



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 109; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.23.30 (0.034 с.)