Трансформаторы для выпрямительных установок 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Трансформаторы для выпрямительных установок



 

Во вторичные обмотки этих трансформаторов включены вентили — устройства, обладающие односторонней проводимостью.

Рассмотрим работу однофазного трансформатора в схеме однополупериодного выпрямления (рис. 5.3, а). Ток во вторичной обмотке этого трансформатора i 2 является пульсирующим, так как он создается только положительными полуволнами вторичного напряжения U2 (рис. 5.3, б). Этот пульсирующий ток имеет две составляющие: постоянную

(5.2)

и переменную

(5.3)

Пренебрегая током х.х. и учитывая (5.3), уравнение МДС рассматриваемого трансформатора можно записать в виде

(5.4)

Рис. 5.3. Трансформатор в схеме выпрямления

В первичную обмотку трансформируется лишь переменная составляющая вторичного тока (5.3), поэтому МДС Idw2 остается неуравновешенной и создает в магнитопроводе трансформатора постоянный магнитный поток Фd, называемый потоком вынужденного намагничивания. Этот поток вызывает дополнительное магнитное насыщение элементов магнитопровода; для того чтобы это насыщение не превышало допустимого значения, необходимо увеличить сечение сердечников и ярм. Эта мера приводит к увеличению расхода стали и меди, т. е. ведет к повышению габаритов, веса и стоимости трансформатора. Этот недостаток однофазной однополупериодной схемы распространяется и на трехфазную однополупериодную схему при соединении вторичной обмотки трансформатора по схеме «звезда—звезда с нулевым выводом» (рис. 5.3, в). В этом случае магнитный поток вынужденного намагничивания Фd значительно меньше, так как, действуя одновременно во всех трех стержнях магнитопровода, он замыкается вне магнитопровода — через медь, воздух, стенки бака — аналогично третьим гармоникам основного магнитного потока (см. рис. 1.26). Однофазную однополупериодную схему применяют лишь для маломощных выпрямителей, что объясняется не только недостатком, вызванным наличием потока Фd, но и значительными пульсациями выпрямленного тока. Трехфазная однополупериодная схема со­единения вторичной обмотки в звезду с нулевым выводом также ограничивается выпрямителями небольшой мощности. Если же вторичную обмотку соединить в равноплечий зигзаг с нулевым выводом (см. рис. 1.22), то недостатки однополупериодной схемы выпрямления, обусловленные возникновением потока Фd, устраняются. Объясняется это тем, что при соединении в равноплечий зигзаг (см. § 1.8) на каждом стержне оказываются две вторичные катушки со встречным соединением. При трехфазной однополупериодной схеме ток Id проходя по всем фазам вторичной обмотки, создает в каждом стержне два потока Фd/2, но так как эти потоки направлены в разные стороны, то они взаимно уравновешиваются. Это достоинство схемы соединения обмоток в зигзаг позволяет применять трехфазную однополупериодную схему при значитель­ных мощностях.

В двухполупериодных схемах, когда ток во вторичной цепи трансформатора создается в течение обоих полупериодов, условия работы трансформатора оказываются намного лучше и неуравновешенной МДС не возникает.

Другим обстоятельством, нежелательно влияющим на работу трансформаторов в схемах выпрямления, является несинусоидальная форма токов в обмотках. В результате в первичной и вторичной обмотках появляются токи высших гармоник, ухудшающие эксплуатационные показатели трансформатора, в частности снижающие его КПД.

Количественно влияние различных причин на работу трансформаторов в схемах выпрямления зависит от ряда факторов: схем выпрямления, наличия сглаживающего фильтра, характера нагрузки.

В связи с тем что первичный и вторичный токи трансформаторов имеют разные действующие значения (из-за их несинусоидальности), расчетные мощности первичной и вторичной обмоток одного и того же трансформатора неодинаковы (S1ном ≠ S2ном ). Поэтому для оценки мощности трансформатора, работающего в вы­прямительной схеме, вводятся понятия типовой мощности

(5.5)

и коэффициента типовой мощности

(5.6)

где выходная мощность, т. е. мощность, поступающая в потреби­тель постоянного тока,

(5.7) '

в номинальном режиме (при номинальных напряжениях Udном и токе Id ном).

Типовая мощность трансформатора всегда больше его выходной мощности, т.е. k т > 1. Объясняется это тем, что при любой схеме выпрямления U2 > Ud и I2> Id

Из этого следует, что габариты и вес трансформаторов для выпрямителей всегда больше, чем у трансформаторов такой же выходной мощности, но при синусоидальных токах в обмотках. Это объясняется тем, что в трансформаторах, работающих в выпрямительных схемах, полезная мощность определяется постоянной составляющей вторичного тока Id а нагрев обмоток — полным вторичным I2 и первичным I1 токами, содержащими высшие гармонические.

При выборе трансформатора для выпрямительной установки или же при его проектировании необходимо знать значение коэффициента k Т.

Значение переменного напряжения на выходе вторичной обмотки трансформатора, необходимого для получения заданного номинального значения постоянного напряжения Udном, определяется выражением

(5.8)

где kU коэффициент напряжения.

Значения коэффициентов напряжения ku и типовой мощности k т для некоторых наиболее распространенных схем выпрямления приведены ниже.

Схемы выпрямляния kU kT
Однофазная однополупериодная Однофазная двухполупериодная мостовая Однофазная двухполупериодная с нулевым выводом Трехфазная с нулевым выводом Трехфазная мостовая 2,22 1,11 1,11 0,855 0,427 3,09 1,23 1,48 1,345 1,05

Сравнение различных схем выпрямления показывает, что лучшее использование трансформатора обеспечивается в мостовых схемах выпрямления, для которых коэффициент kT имеет минимальные значения.

 



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 189; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.190.144 (0.005 с.)