Прямоугольное (ортогональное) проецирование. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Прямоугольное (ортогональное) проецирование.



Начертательная геометрия

Конспект лекций по курсу

“Начертательная геометрия и

инженерная графика”

ВВЕДЕНИЕ.

Все, что создано на земле человеческими руками - здания и сооружения, машины и механизмы, предметы быта сначала родились в мыслях одного человека или группы людей. В строительстве сооружений, производстве машин, предметов быта участвуют коллективы людей. Следовательно, существует необходимость в передачи информации от одного человека к другому. Средством для передачи такой информации является изображение.

Первые изображения при строительстве зданий и сооружений выполнялись прямо на земле в натуральную величину. Дальнейшая деятельность человека привела к появлению таких требований и правил изображениям, чтобы по ним можно было судить о форме, размерах, взаимном расположении элементов предмета. Рисунки становились чертежами.

Уже в древние времена применялись чертежи, на что указывает сложная архитектура крепостей, храмов, дворцов древнего Вавилона, Египта, Греции.

Интенсивно развивалась графика и в России. До настоящего времени дошли планы русских городов Москвы, Пскова, Тихвинского монастыря. По указу Петра1 составлен Семеном Ремезовым атлас «Чертежная книга городов и земель Сибири».

Большой толчок в развитии способов изображений вызвала развитие техники и изобретательства. Например, в 1763 году И.И. Ползунов изготовил чертежи изобретенной им паровой машины, сохранились чертежи механика - самоучки И.П, Кулибина.

Одновременно с развитием графических изображений появилась и развивалась наука, определяющая правила и теорию этого процесса. Первые труды в этом направлении появились в III - V веках до н.э. Это работы Гиппократа, Пифагора, Платона, Демокрита, а позже Евклида, Архимеда. Дальнейшее развитие это направление получило в трудах Л. Альбертин (1404- 1462), Леонардо да Винчи (1452- 1519), А. Дюрера (1471- 1528), Р. Декарта (1596- 1658), И.Ламберти (1728- 1777) и другие.

В конце XVIII в. французский ученый Гаспар Монж обобщил ранее накопленный опыт проекционной грамоты и создал стройную научную дисциплину о прямоугольных проекциях. В 1798 г, он издал свой труд «Начертательная геометрия», в котором впервые систематизировал и обобщил теоретические и практические изыскания в области изображения пространственных объектов на плоскости, Он впервые дал методы выполнения чертежа. В это время начертательная геометрия уже широко изучалась при подготовке инженерных кадров.

В нашей стране курс начертательной геометрии был впервые введен в петербургском институте корпуса инженеров путей сообщения в 1810 г. Первым его прочитал ученик Гаспара Мошка -К. Потье, В 1818 г. лекции по начертательной геометрии в этом институте читал профессор Я.А. Севастьянов, который в 1821 г. издал свой курс под названием «Основания начертательной геометрии». Это был первый в России оригинальный курс, сыгравший важную роль в основании этой дисциплины в нашей стране.

Дальнейшее развитие начертательной геометрии связано с именами М.И, Макарова (1824 - 1904), В.И. Курдюмова (1853 -1904), Е.С. Федорова (1853 - 1919) и других ученых.

Начертательная геометрия в настоящее время это не только теоретическая основа для построения чертежа, Методы начертательной геометрии используются при конструировании сложных поверхностей технических форм, применяемых в авиационной, автомобильной промышленности, в судостроении. Методы начертательной геометрии находят широкое применение в физике, химии, механике, кристаллографии и др. науках.


МЕТОДЫ ПРОЕЦИРОВАНИЯ

Центральное проецирование

Центральное проецирование является наиболее общим случаем получения проекций геометрических фигур. Сущность метода центрального проецирования: пусть даны плоскость a и точка S, не принадлежащая плоскости a. Возьмем произвольную точку А, не принадлежащую плоскости a. Через заданную точку S и точку А проведем [SA) и отметим точку Аa, в которой этот луч пересекает плоскость a (рис.1.1.).

Плоскость a называют плоскостью проекции, точку S - центром проекции, полученную точку Аa - центральной проекцией точки А на плоскость a, [SАa) - проецирующим лучом.

Рис.1.1.
Положение плоскости a и центра S определяет аппарат центрального проецирования.

Так как через две различные точки можно провести одну и только одну прямую, то можно сделать вывод, что при заданном аппарате проецирования каждая точка пространства будет иметь одну и только одну центральную проекцию. Обратное утверждение не имеет смысла.

Для того, чтобы одноз-начно определить положение точки в пространстве, по ее центральным проекциям, необ-ходимо иметь две центральные проекции этой точки, получен-ные из двух различных центров S1 и S2 (рис.1.2.), можно определить положение точки А в пространстве. Для этого дос-таточно провести проеци-рующие лучи [S1Aa1) и [S2Aa2) и найти точку их пересечения.

 

Параллельное проецирование

Параллельное проецирование - частный случай центрального проецирования. При параллельном проецировании центр проекции удален в бесконечность. В этом случае проецирующие лучи станут параллельны друг другу (рис.1.3.).

Рис.1.3.
Полученные таким методом проекции называются параллельными. Аппарат параллельного проецирования определяется положением плоскости a и направлением проецирования S. Отмеченное ранее свойство центрального проецирования сохраняется и в данном случае. Формулируется оно следующим образом: каждая точка пространства, при заданном аппарате проецирования, будет иметь одну и только одну параллельную проекцию. Обратное утверждение не имеет смысла.

1.3. Основные инвариантные свойства параллельного

проецирования.

Геометрические фигуры, в общем случае, проецируются на плоскость проекции с искажением. В частности, при параллельном проецировании нарушаются метрические характеристики геометрических фигур (происходит искажение линейных и угловых величин). Но некоторые свойства оригинала сохраняются и на его проекции. Такие свойства называют инвариантными.

1.3.1. Проекция точки есть точка.

1.3.2. Проекция прямой на плоскость есть прямая.

1.3.3. Если в пространстве точка принадлежит линии, то проекция этой точки принадлежит проекции линии.

1.3.4. Проекции взаимно параллельных прямых также взаимно параллельны, а отношение отрезков таких прямых равно отношению их параллельных проекций.

1.3.5. Точка пересечения проекций пересекающихся прямых является точкой пересечения этих прямых.

1.3.6. Плоская фигура, параллельная плоскости проекции, проецируется на эту плоскость в конгруэнтную фигуру.

1.3.7. Плоский многоугольник в общем случае проецируется в многоугольник с тем же числом вершин.

1.3.8. Параллельный перенос оригинала или плоскости проекции не изменяет вида и размеров проекции оригинала.

Проекций

Для определения положения геометрического объекта в пространстве необходимо задаться какой-либо координатной системой отнесения. Наиболее удобной является система координат, состоящая из трех взаимно перпендикулярных плоскостей.

Рис.1.6.
Рассмотрим макет из трех взаимно перпендикулярных плоскостей (рис.1.6.), которые делят пространство на 8 частей, называемых октантами:

Условимся называть:

плоскость Н -горизонтальная плоскость проекции;

плоскость V - фронтальная плоскость проекции;

плоскость W - профильная плоскость проекции.

Линии пересечения плоскостей проекций образуют оси координат. Ось х называют осью абсцисс, ось у - осью ординат и ось z -осью аппликат. Точка пересечения координатных осей принимается за начало координат.

Положительным направлением осей координат считают для оси х - влево от начала координат, для оси у - в сторону наблюдателя от начала координат, для оси z - вверх от начала координат. Противоположные направления осей считаются отрицательными.

Следы прямой

Прямая общего положения пересекает все три плоскости проекций.

Точку пересечения (встречи) прямой с плоскостью проекции называют следом прямой. Точка пересечения прямой 1 с горизонтальной плоскостью проекций называется горизонтальным следом прямой lh, с фронтальной - фронтальным следом прямой lv, с профильной - профильным следом прямой lw (рис.3.1.).

 

lH¢, 1H", 1H¢¢¢, lv', lv", lv'", lW', lw", lw'" - соответственно горизонтальная, фронтальная, профильная проекции следов 1H, lv, lw. Очевидно, что 1Н'= 1H", lv"= lv, lw'"= lW.

Чтобы построить на чертеже горизонтальный след прямой 1 (рис.3.2.), надо продолжить фронтальную проекцию прямой 1 до пересечения с осью х в точке 1н", затем, используя принцип принадлежности точки прямой достроить 1Н'.

Для построения фронтального следа прямой 1 надо продлить горизонтальную проекцию прямой 1 до пересечения с осью х в точке lv' и достроить по соответствующим линиям связи lV".

 

 

Аналогично строится профильный след прямой 1. Для этого продолжают либо фронтальную проекцию прямой I до пересечения с осью z в точке lW", либо горизонтальную проекцию 1 до пересечения с осью у в точке lW' и по соответствующим линиям связи достраивают недостающие проекции.

Прямые частного положения

Прямая может занимать по отношению плоскостям проекций частное положение:

а) параллельное плоскости проекции;

б) перпендикулярное плоскости проекции;

в) принадлежность плоскости проекции.

Прямые уровня

Прямые, параллельные плоскости проекций, называются прямыми уровня (рис.3.3.).

Горизонталь - прямая, параллельная горизонтальной плоскости проекций (рис.3.3.а.).

Фронталь - прямая, параллельная фронтальной плоскости проекций (рис.3.3.б.).

Профильная прямая - прямая, параллельная профильной плоскости проекций (рис.3.3.в.).

Проецирующие прямые

Прямые, перпендикулярные какой-либо плоскости проекции, называются проецирующими прямыми (рис.3.4.).

Прямые, перпендикулярные горизонтальной плоскости проекций, называются горизонтально — проецирующими прямыми (рис.ЗАа.).

Прямые, перпендикулярные фронтальной плоскости проекции, называются фронтально-проецирующими прямыми (рис.3.4.6.),

Прямые, перпендикулярные профильной плоскости проекций, называются профильно - проецирующими прямыми (рис.3.4.в.).

 

Октанты   Знаки координат  
X   У   z  
I   +   +   +  
II   +   —   +  
III   +   -   —  
IV   +   +   —  
V   —   +   +  
VI   -   -   +  
VII   _   -   —  
vni   -   +   -  

Следы плоскости

Прямую, по которой плоскость пересекает плоскость проекций, называют следом плоскости (рис.4.1.).

При этом различают:

- горизонтальный след - прямая, по которой плоскость пересекает горизонтальную плоскость проекций H (aн);

- фронтальный след - прямая, по которой плоскость пересекает фронтальную плоскость проекций V(av);

 
- профильный след - прямая, по которой плоскость пересекает профильную плоскость проекций W(aw).

Рис.4.1.
Точки в которых пересекаются (сходятся) два следа называются точками схода следов.

Для того, чтобы построить следы плоскости, надо найти следы двух произвольных прямых, принадлежащих этой плоскости.

Плоскость, не параллельную и не перпендикулярную ни к одной из плоскостей проекций, называют плоскостью общего положения.

Проецирующие плоскости

Плоскости, перпендикулярные к плоскостям проекций, называются проецирующими (рис.4.2.).

Плоскость, перпендикулярная горизонтальной плоскости проекций называется горизонтально - проецирующей (рис.4.2.а.).

Плоскость, перпендикулярная фронтальной плоскости проекций, называется фронтально - проецирующей (рис.4.2.6.).

Плоскость, перпендикулярная профильной плоскости проекций, называется профильно - проецирующей (рис.4.2.в.).

 

 

 

Плоскости уровня

Плоскости, перпендикулярные двум плоскостям проекций, называются плоскостями уровня.

Плоскости уровня параллельны какой-либо плоскости проекций:

- плоскость d -фронтальная плоскость (рис.4.3.а.);

- плоскость e -фронтальная плоскость (рис.4.3.б.);

- плоскость x - профильная плоскость (рис.4.3.в.).

 

Линии уровня плоскости

Прямые, параллельные какой - либо плоскости проекции и принадлежащие заданной плоскости, называются линиями уровня плоскости.

Горизонталь плоскости - прямая, принадлежащая плоскости и параллельная горизонтальной плоскости проекций (рис.4.4,а.).

Фронталь плоскости - прямая, принадлежащая плоскости и параллельная фронтальной плоскости проекций (рис.4.4.6.).

Профильная прямая плоскости - прямая, принадлежащая плоскости и параллельная профильной плоскости проекций (рис.4.4,в.).

Следы плоскости также являются ее линиями уровня. Поскольку они лежат в плоскостях проекций, их еще называют нулевыми. Например, горизонтальный след - нулевая горизонталь и т.д.

У плоскостей, заданных следами, горизонтальная проекция горизонтали параллельна горизонтальному следу, фронтальная проекция фронтали параллельна фронтальному следу. профильная проекция профильной прямой параллельна профильному следу.

 


ДВУХ ПЛОСКОСТЕЙ

Плоскости и прямые в пространстве могут быть взаимно параллельны либо пересекаться.

Общего положения.

Прямая, перпендикулярная плоскости проекций проецируется на эту плоскость в точку. В эту же точку спроецируется искомая точка пересечения рис.5.10.

Прямая а ^ V, К² сов-падает с а². Горизонтальную проекцию k1 определяем по условию принадлежности точки к плоскости a(АВС) точка К принадлежит плос-кости a, т.к. она принадлежит прямой n1 принадлежащей a.

МЕТОДЫ ПРЕОБРАЗОВАНИЯ

Решение многих задач по начертательной геометрии сводится к определению позиционных и метрических характеристик геометрических фигур. В связи с этим все многообразие задач может быть отнесено к двум группам:

1. Задачи позиционные - решение которых должно дать ответ на вопрос о взаимном расположении геометрических фигур.

2. Задачи метрические - отвечают на вопросы метрики геометрических фигур, т.е. определение расстояний, величин углов, натуральных величин геометрических объектов и т.д.

В начертательной геометрии задачи решаются графически. Количество и характер геометрических построений при этом определяются не только сложностью задачи, но и в значительной степени зависят от того, с какими проекциями (удобными или неудобными) приходится иметь дело. Задачи решаются зна-чительно проще в случае частного положения геометрической фигуры относительно плоскости проекции. При этом наиболее выгодным частным положением проецируемой фигуры следует считать:

а) положение, перпендикулярное к плоскости проекции (для решения позиционных, а в ряде случаев, и метрических задач);

б) положение, параллельное по отношению к плоскости проекции (при решении метрических задач).

Переход от общего положения геометрической фигуры к частному можно осуществить за счет изменения взаимного положения проецируемой фигуры и плоскости проекции. При ортогональном проецировании это достигается двумя путями:

во - первых, перемещением в пространстве проецируемой фигуры так, чтобы она заняла частное положение относительно плоскостей проекций, которые при этом не меняют своего положения в пространстве;

во - вторых, перемещением плоскостей проекций в новое положение, по отношению к которому проецируемая фигура (которая не меняет своего положения в пространстве) окажется в частном положении.

Первый путь лежит в основе метода плоскопараллельного перемещения; второй составляет теоретическую базу метода перемены плоскостей проекций.

К плоскости проекции

Это частный случай параллельного перемещения. Отличие в том, что траектория перемещения каждой геометрической фигуры представляет собой не произвольную линию, а дугу окружности, центр которой находится на этой оси вращения, а радиус равен расстоянию между точкой и осью вращения.

При вращении вокруг оси, перпендикулярной V, точка будет перемещаться в плоскости, перпендикулярной оси вращения, а следовательно, параллельной Н. Окружность, по которой движется точка, проецируется, таким образом, на V без искажения, а на Н в отрезок, параллельный оси х.

Пример 1. [АВ] перевести в положение, параллельное V (Рис.6.4.).

Вращение производили вокруг оси i ^ H. Ось i для упрощения геометрических построений проведена через точку В, следовательно она не будет менять своего положения в процессе преобразования. Для нахождения точки А// необходимо из А/ провести перпендикуляр к оси х и отметить точку его пересечения с горизонтальной прямой, проведенной через a//.

 

Пример 2. [CD] перевести в положение, перпендикулярное V (Рис.6.5.).

В этом случае следует осуществить два вращения вокруг осей, перпендикулярных плоскостям проекций.

В начале вращение производим вокруг i1^V, в результате которого [АВ] занимает положение, параллельное Н, а затем переводим [АВ] в горизонтально - проецирующее положение вращением вокруг оси перпендикулярной Н.

В случае перевода плоскости общего положения в частное решается аналогично.

Чтобы плоскость общего положения заняла проецирующее положение, достаточно горизонталь или фронталь перевести в проецирующее положение. При повороте линии уровня на угол j на такой же угол повернется и все множество точек этой плоскости.

Если необходимо преобразовать плоскость в положение, параллельное плоскости проекции, необходимо осуществить еще одно вращение на какой - то угол так, чтобы вырожденная проекция плоскости (прямая, в которую проецируется плоскость) заняла положение, параллельное оси х..

Плоских кривых

Если точка А принадлежит кривой m, то проекция этой точки А¢ принадлежит проекции m¢ кривой. Секущая и касательная к кривой проецируются соответственно в секущую и касательную к проекции кривой. Пусть через точку А кривой m проведена секущая n (рис.7.3.).

Проекция секущей определяется точками А¢ и В¢ принадлежащими проекции m¢ рассматриваемой кривой. Прямая n¢, пересекающая проекцию кривой, является по отношению к m¢ секущей. Касательную t можно рассматривать как предельное положение секущей, которое занимает последняя при сближении точек пересечения А и В в одну точку, В этом случае совпадут друг с другом и их проекции, т.е. проекция n¢ секущей превратиться в касательную t¢ к проекции m кривой.

Проекции плоских кривых

Чтобы наиболее точно передать форму кривой линии, при построении ее проекций необходимо, прежде всего, отложить характерные точки. Такими точками являются особые точки кривой, а так же точки наиболее удаленные от плоскостей проекций и наиболее близкие к ним.

Точка кривой называется обыкновенной, если в этой точке к кривой можно провести единственную касательную. На рис.7.4. такой точкой является точка М.

Рис.7.4.
Другие точки называют особыми (точки А, В). К ним относятся точки возврата (рис.7.5,а,б.), точки самопересечения (рис.7.5,в.), точки перегиба (рис.7,5,г.), точки излома (рис.7.5,д,е.).Особым точкам плоской кривой соответствуют такие же точки на ее проекции. Кривая, состоящая только из обыкновенных точек, называется плавной кривой.

На рис.7.6. выполнено построение горизонтальной проекции l¢ кривой линии 1, принадлежащей плоскости a(h,f) по заданной фронтальной 1². Точки А, К, N, D, Е - характерные. А - точка, наиболее удаленная от горизонтальной плоскости проекции, К - точка, наиболее удаленная от фронтальной плоскости проекций, Е - самая низкая, D - точка возврата, N - точка прекращения.

Точки В, С - промежуточные. Все точки кривой строятся по условию принадлежности их плоскости.

ПОВЕРХНОСТИ

Поверхности - это бесконечное разнообразие геометрических фигур. Любой предмет в природе или в технике ограничивается своей поверхностью. Инженерная деятельность связана непосредственно с конструированием, расчетом, изготовлением различных технических поверхностей.

8.1. Способы образования и задания поверхностей,

Классификация поверхностей

Многообразие поверхностей требует их систематизации. В основе систематизации лежат два признака: вид образующей и закон ее перемещения. По виду образующей поверхности делят на линейчатые (образующая прямая) линии и нелинейчатые ^образующая кривая). По закону перемещения поверхности параллельного переноса, вращения и винтовые.

Линейчатые поверхности

Поверхность называется линейчатой, если она образована движением прямой линии по какому - нибудь закону. Закон ее движения обычно задается направляющими. В общем случае линейчатая поверхность может быть получена движением прямой линии по трем направляющим.

Коническая поверхность образуется перемещением прямой 1 (образующей) по кривой направляющей m и, проходящей через фиксированную точку S (вершину). a (1,m,S); (liÇm, SÎli),(Рис.8.6.) Точка М, принадлежащая поверхности конуса, принадлежит образующей 1.

Цилиндрическая поверхность b (рис.8.9.) образуется перемеще-нием прямой образую-щей 1 по кривой направляющей m. При этом образующие параллель-ны заданному направле-нию s Цилиндрическую поверхность можно рассматривать как частный случай кони-ческой поверхности с бесконечно удаленной вершиной s.

b (1, m, s); (li Ç m, li // s).

Точка М, принадлежащая цилиндру, принадлежит образующей 1.

На комплексном чертеже коническая и цилиндрическая поверхности могут быть заданы проекциями направляющей m и вершины S в случае конической поверхности (рис.8.7.) или проекциями направляющей m и направления s образующей в случае цилиндрической поверхности (рис.8.10). Обычно при задании конической или цилиндрической поверхности в качестве направляющей выбирается, какая - нибудь линия уровня, например горизонталь h.

Для увеличения наглядности изображения конической и цилиндрической поверхностей на комп-лексном чертеже, помимо элементов, определяющих эти поверхности., дополнительно строят их очерки.
Рис.8.9.
На рис.8.8 и 8.11. показано построение очерков (горизонтального и фронтального) конической и цилиндрической поверхностей, точками 1 и 2 обозначены концы очерковых образующих в горизонтальной проекции, а 3 и 4 - концы очерковых образующих во фронтальной проекции.

 

       
   
Рис.8.8.
 
Рис.8.7.
 

 

 


 

 
 
Рис.8.9.

 

 


При этом горизонтальные проекции точек 1 и 2 являются точками касания к проекции hi направляющей h очерковых образующих, а проекции 3 и 4 являются точками касания к h1 линий связи. Этими очерковыми образующими определяются на плоскостях проекций области, внутри которых могут находиться проекции точек данных поверхностей, а также производится разграничение проекций поверхностей на видимую и невидимую части на каждой из плоскостей проекций.

Рис.8.12.
Рис.8.10.
Рис.8.11.
Если направляющей является ломаная линия, то получим частные случаи конической и цилиндрической поверхности - пирамидальную и призматическую поверхности.

Поверхности вращения

Поверхности вращения создаются при вращении прямолинейной или криволинейной образующей m вокруг неподвижной оси 1. (Рис.8.13.а.)

Благодаря простоте формирования этих поверхностей они получили широкое применение в технике. Геометрическая часть определителя поверхности вращения состоит всего из двух линий: образующей m и оси i.

Алгоритмическая часть определителя включает так же две операции:

1) на образующей m выделяют ряд точек А, В, С... К.

2) каждую точку вращают вокруг оси i.

Так создается каркас поверхности, состоящий из множества окружностей, плоскости которых распологаются перпендикулярно оси i. Эти окружности называются параллелями. Наименьшая параллель называется горлом, наиболъшая экватором. Линии, полученные в сечении поверхности плоскостями, проходящими через ось, называются меридианами. Плоскость, перпендикулярная оси вращения пересекает поверхность по окружности - параллели.

 

 

 
 
Рис.8.13.


На чертеже ось поверхности вращения располагают перпендикулярноодной из плоскостей проекций. Так на рис.8.13. ось i ^ H.

На плоскость Н в этом случае проецируются все параллели, а на плоскость V - два меридиана, которые определяют фронтальный очерк. Меридиан, расположенный в плоскости, параллельной V называют главным. Для того чтобы найти горизонтальную проекцию произвольной точки М, принадлежащей поверхности вращения, проводят через М² фронтальную проекцию параллели. Затем, простроив проекцию этой параллели на плоскости Н, определяют М¢.

1. Сфера. Образуется вращением окружности вокруг оси, проходящей через центр сферы. При сжатии или растяжении сферы она преобразуется в эллипсоиды, которые могут быть образованы и при вращении эллипса вокруг одной из его осей. Если осью вращения является большая ось эллипса, эллипсоид называется вытянутым, а если меньшая то сжатым (Рис.8.14.)

 

 

 
 
Рис.8.14.


2. Тор. Поверхность тора формируется при вращении окружности вокруг оси, не проходящей через центр, Рис.8.21.

 

 
Различают;

а) открытый тор (рис.8.16,а), б) замкнутый (рис.8.16.б.),

в) самопересекающейся

(рис.8.16,в.).

Отсеки тора, обра-зованные вращением дуги окружности называются глобоидами. Рис.8.17.

       
 
Рис.8.15.
 
   
Рис.8.16.


 

Рис.8.17.

 

При вращении вокруг оси прямой линии образуется цилиндрическая поверхность вращения (образующая параллельна оси вращения) и коническая поверхность вращения (образующая пересекает ось вращения) (рис. 8.18., 8.19.)

       
 
Рис.8.18.
 
Рис.8.19.

9. ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ

Решении задач

На рис.9.3. даны конус и полусфера.

В данном случае в качестве вспомогательных секущих плоскостей необходимо выбрать плоскости, параллельные горизонтальной плоскости проекций, так как такие плоскости пересекают конус и полусферу по окружностям.

Рис.9.3.
Чтобы начать построение линии пересечения необходимо начать построение линии пере-сечения необходимо найти опор-ные точки: самую высокую и самую низкую в данном случае. В других случаях это может быть самая левая или самая правая точки. Пересечем обе поверхности плоскостью b½½V и проходящей через оси вращения поверхностей. В результате получим линии пересечения, которые являются фронтальными очерками данных поверхностей. Точка пересечения очерков 1 является точкой, принадлежащей линии пересечения.

Так как основания обеих поверхностей лежат в одной плоскости, то точки пересечения окружностей 2 и 3 также являются общими точками для данных поверхностей.

Точки 1,2,3 являются опорными, точка 1 - самая высокая, точки 2, 3- самые низкие. Теперь обе поверхности пересечем плоскостью a, расположенной ниже точки 1 и выше точек 2 и 3. Эта плоскость a пересечет обе поверхности по окружностям n2 и m2 найдем точки пересечения полученных окружностей n2Çm2 = 4,:n2 Ç m2 = 5.

Точки 4,5 принадлежат линии пересечения конуса и полусферы. Повторив это действие, необходимое число раз, построим линию пересечения данных поверхностей.

Метод концентрических сфер

В этом случае в качестве вспомогательных секущих поверхностей выбираются концентрические сферы.

Применение этого метода основано на следующем свойстве: Две поверхности вращения, имеющие общую ось (соосные поверхности), пересекаются по окружностям. Действительно, кривая m образует поверхность вращения с осью вращения i, кривая n образует вторую поверхность вращения с той же осью i. Если mÇn = А, то точка А опишет окружность, которая является общей для обеих поверхностей, следовательно, является линией их пересечения. (Рис.9.4.)

Если ось i перпендикулярна плоскости Н, то окружность, описываемая точкой А, проецируется на фронтальную плоскость проекций в отрезок, а на горизонтальную плоскость в окружность.

Из сказанного можно сделать следующие выводы:

1. Для того, чтобы вспомогательная секущая сфера пересекала по окружностям две заданные поверхности вращения, центр сферы должен лежать в точке пересечения осей этих поверхностей.

2. Если оси заданных поверхностей вращения параллельны плоскости проекций, то окружности пересечения вспомогательной секущей сферы с этими поверхностями проецируется на эту плоскость в отрезки.

 

Теперь можно сформулировать условия, необходимые для применения метода концентрических секущих сфер:

1. Данные поверхности должны быть поверхностями вращения;

2. Оси вращении данных поверхностей должны пересекаться;

3. Плоскость, проходящая через оси вращения данных поверхностей, должна быть параллельна какой - нибудь плоскости проекций.

Построение линии пересечения начинается с построения опорных точек (Рис.9.5.). Чтобы построить опорные точки надо построить сферу минимального радиуса. Сфера минимального радиуса вписана в одну поверхность и пересекает вторую.

Общие точки С и Д окружности касания с конусом и окружности пересечения с цилиндром являются опорными точками. К опорным точкам относятся также точки пересечения фронтальных очерков данных поверхностей. Отрезок O²F² где f² наиболее удаленная от точки О² точка пересечения очерков данных поверхностей определяет сферу максимального радиуса.

Для построения промежуточных точек необходимо выбрать сферу радиуса R, где Rmin< R< Rmax.

1. Для этого из центра О²= i²2 Ç i²1 нужно провести окружность произвольного радиуса, являющейся проекцией сферы.

2. Построим линию пересечения сферы с конусом. Это будет окружность, которая на фронтальную плоскость проекций проецируется в отрезок. Затем построим линию пересечения сферы с цилиндром. Это тоже окружность, которая тоже проецируется в отрезок, точки пересечения А и В данных окружностей являются точками пересечения цилиндра и конуса. Для построения других промежуточных точек нужно из точки О² описать ряд концентрических окружностей и проделать те же построения.

 

 

Метод эксцентрических сфер

Рассмотрим пересечение конуса и тора (рис.9.6.). Ось конуса параллельна V, а ось вращения тора j перпендикулярна V. Ocь конуса i и круговая ось тора q лежат в общей плоскости симметрии d, параллельной плоскости V. По отношению к плоскости V плоскость d является главной меридиональной плоскостью Поэтому плоскость d пересекает конус по образующим, а тор - по двум дугам окружности. Оба сечения проецируются на плоскости V очерковыми линиями проекций тора и конуса. Очерковые линии пересекаются в точках 1² и 2², которые являются проекциями точек 1 и 2, принадлежащими линии l пересечения рассматриваемых поверхностей. Эти точки являются опорными. Проведем через ось тора j плоскость Г. Плоскость Г пересечет тор по окружности р, а его круговую ось - в точке С. Окружность р проецируется на плоскость V отрезком р², равным ее диаметру.

Рис.9.6.



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 202; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 44.203.235.24 (0.204 с.)