Детектирование ионизирующих излучений. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Детектирование ионизирующих излучений.



В основе работы дозиметрических и радиометрических приборов используются следующие методы индикации:

ионизационный, основанный на свойстве, способности этих излучений ионизировать любую среду, через которую они проходят, в том числе и детекторное (улавливающее) устройство прибора. Измеряя ионизационный ток, получают представление об интенсивности радиоактивных излучений;

сцинтиляционный, регистрирующий вспышки света, возникающие в сцинтиляторе (детекторе) под действием ионизирующих излучений, которые фотоэлектронным умножителем (ФЭУ) преобразуются в электрический ток. Измеряемый анодный ток ФЭУ (токовый режим) и скорость счета (счетчиковый режим) пропорциональны уровням радиации;

люминисцентный, базирующийся на эффектах радиофотолюминисценции (ФЛД) и радиотеримолюминисценции (ТЛД). В первом случае под действием ионизирующих излучений в люминофоре создаются центры фотолюминисценции, содержащие атомы и ионы серебра, которые при освещении ультрафиолетовым светом вызывают видимую люминисценцию, пропорциональную уровням радиации. Дозиметры ТЛД под действием теплового воздействия (нагрева) преобразуют поглощенную энергию ионизирующих излучений в люминицентную, интенсивность которой пропорциональна дозе ионизирующих излучений;

фотографический — один из первых методов регистрации ионизирующих излучений, позволивший французскому ученому Э. Беккерелю открыть в 1896 г. явление радиоактивности. Этот метод дозиметрии основан на свойстве ионизирующих излучений воздействовать на чувствительный слой фотоматериалов аналогично видимому свету. По степени почернения (плотности) можно судить об интенсивности воздействующего на пленку ионизирующего излучения с учетом времени этого воздействия;

химический, основанный на измерении выхода радиационно-химических реакций, протекающих под действием ионизирующих излучений. Известно значительное количество различных веществ, изменяющих свою окраску (степень окраски) или цвет в результате окислительных или восстановительных реакций, что можно соизмерять со степенью или плотностью ионизации. Данный метод используют при регистрации значительных уровней радиации;

калориметрический, базирующийся на измерении количества теплоты, выделяемой в детекторе при поглощении энергии ионизирующих излучений, поглащаемая веществом, в конечном итоге преобразуются в теплоту при условии, что поглащающее вещество является химически инертным к излучению и это пропорционально интенсивности излучений;

нейтронно-активационный, связанны с измерением наведенной активности и в которых случаях являющийся единственно возможным методом регистрации, особенно слабых нейтронных потоков, так как наведенная ими активность оказывается слишком малой для надежных измерений обычными методами. Кроме того, этот метод удобен при оценке доз в аварийных ситуациях, когда наблюдается кратковременное облучение большими потоками нейтронов.

В биологических методах дозиметрии использована способность излучений изменять биологические объекты. Величину дозы оценивают по уровню летальности животных, степени лейкопении, количеству хромосомных аббераций, изменению окраски и гиперемии кожи, выпадению волос, появлению в моче дезоксицитидина и др. Биологические методы не очень точны и менее чувствительны по сравнению с физическими.

В расчетных методах дозу излучения определяют путем математических вычислений. Это единственно возможный метод определения дозы от инкорпорированных радионуклидов, т. е. попавших внутрь организма.

 

Характеристика очага поражения при аварии на АЭС.

Очаг ядерного поражения

Ядерный взрыв боеприпаса или таковой, возникающий при аварии на атомной электростанции, сопровождается выделением огромного количества энергии. Он по своему разрушающему действию в сотни и тысячи раз может превосходить взрыв самого крупного обычного боеприпаса и происходит в миллионные доли секунды. При этом в центре взрыва температура мгновенно повышается до нескольких миллионов градусов, а давление возрастает до нескольких миллионов атмосфер, и в результате этого вещество заряда переходит в газообразное состояние. Сфера раскаленных газов, стремящаяся расшириться, сжимает прилегающие слои воздуха. На границе сжатого воздуха создается перепад давления и образуется воздушная ударная волна.

Одновременно с ударной волной из зоны взрыва распространяется мощный поток нейтронов и гамма-излучения, образующихся в ходе ядерной реакции. Светящаяся область взрыва в виде огненного шара через 1-2 секунды достигает своих максимальных размеров, а мощные восходящие потоки воздуха, вызываемые разностью температур, поднимают с земли пыль и частицы грунта, образуя при этом характерный пылевой столб. Поднявшаяся пыль, смешавшись с радиоактивными осколками ядерного деления, постепенно выпадая из радиоактивного облака, заражает местность.

Мгновенно действующее гамма-излучение ионизирует атомы воздуха и разделяет их на электроны и положительно заряженные ионы. Причем электроны с большой скоростью разлетаются в радиальном направлении от центра взрыва, а положительно заряженные ионы практически остаются на месте. То есть происходит разделение положительных и отрицательных зарядов, а это приводит к возникновению электрических и магнитных полей. Эти короткоживущие поля принято называть электромагнитным импульсом (ЭМИ) ядерного взрыва.

Таким образом, при ядерном взрыве поражения возможны в результате воздействия:

· ударной волны (примерно 50-55% выделившейся при взрыве энергии);

· светового излучения (около 35% энергии взрыва), продолжающегося от нескольких секунд (при мощности боеприпаса до 20 кт) до 20 секунд (при мощности боеприпаса более 1Мт);

· проникающей радиации (примерно 5% энергии взрыва), продолжающейся до 15 секунд;

· радиоактивного заражения местности (до 5% энергии взрыва);

· электромагнитного импульса, время действия которого измеряется миллисекундами.

Ударная волна - наиболее сильный поражающий фактор ядерного взрыва, распространяется со сверхзвуковой скоростью во все стороны от места взрыва. Она представляет собой область резкого сжатия воздуха и область разрежения. Область сжатия движется впереди, а область разряжения - позади неё. Поражающее действие ударной волны продолжается несколько минут и обуславливается:

· максимальным избыточным давлением во фронте волны;

· скоростным напором воздуха;

· временем действия.

Величина безопасного давления на открытой местности для людей составляет до 0,1 кг/см2 (примерно 9,8 кПа). Соответственно, давления, превышающие эту величину, вызывают разной степени повреждения, что представлено в табл. 10.1.



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 292; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.96.159 (0.005 с.)