Диэлектрики в электрическом поле. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Диэлектрики в электрическом поле.



 

Определение: Диэлектрики это вещества, у которых электроны внешних оболочек атома не могут свободно перемещаться по объему диэлектрика под действием сколь угодно малого внешнего поля.

В зависимости от химического строения диэлектрики можно разделить на три группы:

1. 1. Неполярные диэлектрики.

К ним относятся такие диэлектрики (парафин, бензол), у которых центры сосредоточения положительных и отрицательных зарядов совпадают.Примечание: У неполярных диэлектриков возникающий дипольный момент при наложении внешнего электрического поля является упругим и пропорционален напряженности электрического поля.

2. 2. Полярные диэлектрики (рис. 18.4,18.5).

К ним относятся такие диэлектрики, у которых центры сосредоточения положительных и отрицательных зарядов не совпадают.

 

Примечание: Отличительной особенностью полярных диэлектриков является жесткий дипольный момент (к таким диэлектрикам относятся вода, нитробензол и т. д.).

При помещении полярного диэлектрика во внешнее электрическое поле, дипольный момент каждой молекулы будет стремиться развернуться по полю, в тоже время этому процессу препятствует тепловое хаотическое движение, таким образом дипольный момент для полярного диэлектрика является функцией зависимости Е0 от температуры.

Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор электрической поляризации. Физический смысл вектора электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.

3. Идеальный газ оказывает на стенки сосуда давление 1,01•105 Па. Тепловая скорость движения молекул 500 м/с. Найдите плотность газа.

. (1,21кг/м3). Решение.. Разделим на V обе части уравнения. Получим

μ найдём из формулы скорости молекул

 

Билет №7

Сила упругости. Закон Гука. Силы трения.

Силы упругости

При деформациях твердого тела его частицы (атомы, молекулы, ионы), находящиеся в узлах кристаллической решетки, смещаются из своих положений равновесия. Этому смещению противодействуют силы взаимодействия между частицами твердого тела, удерживающие эти частицы на определенном расстоянии друг от друга. Поэтому при любом виде упругой деформации в теле возникают внутренние силы, препятствующие его деформации.

Силы, возникающие в теле при его упругой деформации и направленные против направления смещения частиц тела, вызываемого деформацией, называют силами упругости. Силы упругости действуют в любом сечении деформированного тела, а также в месте его контакта с телом, вызывающим деформации. В случае одностороннего растяжения или сжатия сила упругости направлена вдоль прямой, по которой действует внешняя сила, вызывающая деформацию тела, противоположно направлению этой силы и перпендикулярно поверхности тела. Природа упругих сил электрическая.

Мы рассмотрим случай возникновения сил упругости при одностороннем растяжении и сжатии твердого тела.

Закон Гука

Связь между силой упругости и упругой деформацией тела (при малых деформациях) была экспериментально установлена современником Ньютона английским физиком Гуком. Математическое выражение закона Гука для деформации одностороннего растяжения (сжатия) имеет вид

f=-kx, (2.9)

где f - сила упругости; х - удлинение (деформация) тела; k - коэффициент пропорциональности, зависящий от размеров и материала тела, называемый жесткостью. Единица жесткости в СИ - ньютон на метр (Н/м).

Закон Гука для одностороннего растяжения (сжатия) формулируют так: сила упругости, возникающая при деформации тела, пропорциональна удлинению этого тела.

Рассмотрим опыт, иллюстрирующий закон Гука. Пусть ось симметрии цилиндрической пружины совпадает с прямой Ах (рис. 20, а). Один конец пружины закреплен в опоре в точке А, а второй свободен и к нему прикреплено тело М. Когда пружина не деформирована, ее свободный конец находится в точке С. Эту точку примет за начало отсчета координаты х, определяющей положение свободного конца пружины.

Растянем пружину так, чтобы ее свободный конец находился в точке D, координата которой х>0: В этой точке пружина действует на тело М упругой силой

fх=-kx<0.

Сожмем теперь пружину так, чтобы ее свободный конец находился в точке В, координата которой х<0. В этой точке пружина действует на тело М упругой силой

fх=-kx>0.

Сила трения скольжения — силы, возникающие между соприкасающимися телами при их относительном движении. Если между телами отсутствует жидкая или газообразная прослойка (смазка), то такое трение называется сухим. В противном случае, трение называется «жидким». Характерной отличительной чертой сухого трения является наличие трения покоя.

Опытным путём установлено, что сила трения зависит от силы давления тел друг на друга (силы реакции опоры), от материалов трущихся поверхностей, от скорости относительного движения и не зависит от площади соприкосновения. (Это можно объяснить тем, что никакое тело не является абсолютно ровным. Поэтому истинная площадь соприкосновения гораздо меньше наблюдаемой. Кроме того, увеличивая площадь, мы уменьшаем удельное давление тел друг на друга.) Величина, характеризующая трущиеся поверхности, называется коэффициентом трения, и обозначается чаще всего латинской буквой «k» или греческой буквой «μ». Она зависит от природы и качества обработки трущихся поверхностей. Кроме того, коэффициент трения зависит от скорости. Впрочем, чаще всего эта зависимость выражена слабо, и если большая точность измерений не требуется, то «k» можно считать постоянным.

В первом приближении величина силы трения скольжения может быть рассчитана по формуле:

, где

— коэффициент трения скольжения,

— сила нормальной реакции опоры.

 



Поделиться:


Последнее изменение этой страницы: 2016-12-12; просмотров: 231; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 44.212.94.2 (0.009 с.)