Диамагнетики, парамагнетики, ферромагнетики.



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Диамагнетики, парамагнетики, ферромагнетики.



ферромагнетики — вещества, обладающие спонтанной намагниченностью, т. е. они намагниче­ны даже при отсутствии внешнего магнитного поля. К ферромагнетикам кроме основ­ного их представителя — железа (от него и идет название «ферромагнетизм») — относятся, например, кобальт, никель, гадолиний, их сплавы и соединения.

Ферромагнетики помимо способности сильно намагничиваться обладают еще и другими свойствами, существенно отличающими их от диа- и парамагнетиков. Если для слабомагнитных веществ зависимость J от Н линейна (см. (133.6) и рис. 192), то для ферромагнетиков эта зависимость, впервые изученная в 1878 г. методом баллистического гальванометра для железа русским физиком А.Г. Столетовым (1839—1896), является довольно сложной. По мере возрастания Ннамагниченность J сначала растет быстро, затем медленнее и, наконец, достигается так называемоемагнитное насыщениеJнас

Существенная особенность ферромагнетиков — не только большие значения m (на­пример, для железа — 5000, для сплава супермаллоя — 800 000!), но и зависимость m от Н (рис. 194). Вначале m растет с увеличением Н, затем, достигая максимума, начинает уменьшаться, стремясь в случае сильных полей к 1 (m =B/(m0H) = 1 + J/H, поэтому при J = Jнас = const с ростом Н отношение J/H ® 0, m ®1).

Характерная особенность ферромагнетиков состоит также в том, что для них зависимость J от H (а следовательно, и В от Н) определяется предысторией намагничения ферромагнетика. Это явление получило название магнитного гистерезиса. Если намагнитить ферромагнетик до насыщения (точка 1, рис. 195), а затем начать уменьшать напряженность Н намагничивающего поля, то, как показывает опыт, уменьшение J описывается кривой 1—2, лежащей выше кривой 1—0. При Н = 0 J отличается от нуля, т. е. в ферромагнетике наблюдается остаточное намагничение Jос. С наличием остаточного намагничения связано существованиепостоянных магнитов. Намагничение обращается в нуль под действием поля Нс, имеющего направление, противоположное полю, вызвавшему намагничение. Напряженность Нс называется коэрцитивной силой.

При дальнейшем увеличении противоположного поля ферромагнетик перемагничивается (кривая 3—4), и при Н = –Hнас достигается насыщение (точка 4). Затем фер­ромагнетик можно опять размагнитить (кривая 4—5—6) и вновь перемагнитить до насыщения (кривая 67).

Таким образом, при действии на ферромагнетик переменного магнитного поля намагниченность J изменяется в соответствии с кривой 1234—5—6—1,которая называетсяпетлей гистерезиса (от греч. «запаздывание»). Гистерезис приводит к тому, что намагничение ферромагнетика не является однозначной функцией Н, т.е. одному и тому же значению Н соответствует несколько значений J.

Ферромагнетики обладают еще одной существенной особенностью: для каждого ферромагнетика имеется определенная температура, называемая точкой Кюри, при которой он теряет свои магнитные свойства. При нагревании образца выше точки Кюри ферромагнетик превращается в обычный парамагнетик. Переход вещества из ферромагнитного состояния в парамагнитное, происходящий в точке Кюри, не сопровождается поглощением или выделением теплоты, т.е. в точке Кюри происходит фазовый переход II рода.

Наконец, процесс намагничения ферромагнетиков сопровождается изменением его линейных размеров и объема. Это явление получило названиемагнитострикции. Величина и знак эффекта зависят от напряженности Н намагничивающего поля, от природы ферромагнетика и ориентации кристаллографических осей по отношению к полю.

 

 

Первое уравнение Максвелла

Первое уравнение Максвелла - это обобщение закона Ампера и Био-Саварра для токов смещения. Звучит следующим образом: циркуляция вектора напряженности магнитного поля по замкнутому контуру равна полному току, пронизывающему этот контур.

В современном обозначении записывается

Т.о. физический смысл первого уравнения Максвелла состоит в том, что магнитное поле в некоторой области пространства связано не только с токами проводимости, протекающими в этой области, но и с изменением электрического поля во времени в этой области(токами смещения).

Это означает, что циркуляция вектора по контуру L равна сумме токов проводимости и смещения.

 

Подставляя 1.10, 1.11 в 1.9, получим

Уравнение 1.12 называют первым уравнением Максвелла в интегральной форме.

Получим дифференциальную форму уравнения Максвелла. Для этого воспользуемся уравнением Стокса, которое преобразует контурный интеграл вповерхностный:

Применим уравнение 1.13 к левой части уравнения 1.12. Получим

Уравнение 1.14 справедливо, если равны подынтегральные функции, то есть

Уравнение 1.15 есть первое уравнение Максвелла в дифференциальной форме.

Для изотропных сред

Подставим в 1.15

Дифференциальная форма первого уравнения Максвелла используется в том случае, когда производные поля по координатам пространства непрерывны. Интегральная форма 1.12 такого ограничения не имеет.

 

Эффект Холла

Эффект Холла* (1879) — это возникновение в металле (или полупроводнике) с током плотностью j, помещенном в магнитное поле В, электрического поля в направлении, перпендикулярном В и j.

Поместим металлическую пластинку с током плотностью j в магнитное поле В, перпендикулярное j (рис. 172). При данном направлении j скорость носителей тока в металле — электронов — направлена справа налево. Электроны испытывают действие силы Лоренца, которая в данном случае направлена вверх. Таким образом, у верхнего края пластинки возникнет повышенная концентрация электронов (он зарядится отрицательно), а у нижнего — их недостаток (зарядится положительно). В результате этого между краями пластинки возникнет дополнительное поперечное электрическое поле, направленное снизу вверх. Когда напряженность ЕB этого поперечного поля достигнет такой величины, что его действие на заряды будет уравновешивать силу Лоренца, то установится стационарное распределение зарядов в поперечном направлении. Тогда

где а — ширина пластинки, Dj — поперечная (холловская) разность потенциалов.

Учитывая, что сила тока I=jS=nevS (S — площадь поперечного сечения пластинки толщиной d, п — концентрация электронов, v — средняя скорость упорядоченного движения электронов), получим

(117.1)

т. е. холловская поперечная разность потенциалов прямо пропорциональна магнитной индукции В, силе тока I и обратно пропорциональна толщине пластинки d.В формуле (117.1) R=1/(en) постоянная Холла, зависящая от вещества. По измеренному значе­нию постоянной Холла можно: 1) определить концентрацию носителей тока в проводнике (при известных характере проводимости и заряда носителей); 2) судить о природе проводимости полупроводников, так как знак постоянной Холла совпадает со знаком заряда е носителей тока. Эффект Холла поэтому — наиболее эффективный метод изучения энергетического спектра носителей тока в металлах и полупроводниках. Он применяется также для умножения постоянных токов в анало­говых вычислительных машинах, в измерительной технике (датчики Холла) и т. д.



Последнее изменение этой страницы: 2016-12-12; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.238.88.35 (0.005 с.)