Образец решения типовых задач. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Образец решения типовых задач.



1. Вычислить определитель:

а) непосредственным разложением по строке;

б) непосредственным разложением по столбцу;

Решение. а) вычисляем определитель разложением по элементам первой строки: = .

Тогда = =

б) вычисляем определитель непосредственным разложением по элементам второго столбца: = .

Тогда = = .

Ответ: .

2. а) Найти матрицу , если:

, .

Решение:

1) Транспонируем матрицу : .

2) Вычисляем произведение матриц :

.

3) Находим матрицу :

.

4) Находим матрицу :

.

Ответ: .

б) Найти собственные числа и векторы матрицы .

Множество собственных чисел матрицы совпадает с множеством корней характеристического уравнения матрицы : , а множество собственных векторов, отвечающих собственному числу , совпадает с множеством ненулевых решений матричного уравнения: , определяемым методом Гаусса.

Решение:

1) Составляем характеристическое уравнение матрицы :

.

Записываем его в виде алгебраического уравнения и находим действительные корни (среди них могут быть и кратные):

, .

Таким образом, собственными числами матрицы являются: и .

2) Находим собственные векторы матрицы , отвечающие различным собственным числам и .

2.1) Составляем матричное уравнениедля нахождения собственных векторов , отвечающих собственному числу :

или

,

записываем его в виде системы линейных уравнений: и решаем методом Гаусса. Полученная система, очевидно, эквивалентна системе , имеющей специальный (трапециевидный) вид. Такая система имеет бесконечно много решений, которые записывают в виде общего решения. Для записи общего решения этой системы указываем её базисные и свободные неизвестные. Базисными являются неизвестные, столбцы коэффициентов системы при которых образуют базисный минор матрицы этой системы. Такой минор образует, например, столбец коэффициентов при неизвестной : . Поэтому выбираем в качестве базисной – неизвестную , тогда свободными будут неизвестные и . Свободным неизвестным придаём разные, произвольные постоянные значения: , , где , , одновременно, и выражаем через них значение базисной неизвестной из уравнения системы: . Тогда общее решение системы, задающее множество всех собственных векторов , отвечающих собственному числу будет иметь вид: .

2.2) Составляем матричное уравнениедля нахождения собственных векторов , отвечающих собственному числу :

или

,

записываем его в виде системы линейных уравнений: и решаем методом Гаусса. Полученная система, очевидно, эквивалентна системе , имеющей специальный (трапециевидный) вид. Система имеет бесконечно много решений. Для записи её общего решения указываем базисные и свободные неизвестные. Базисный минор матрицы системы образуют столбцы коэффициентов при неизвестных и : . Поэтому выбираем в качестве базисных – неизвестные и , тогда свободной будет неизвестная . Свободной неизвестной придаём произвольное постоянное значение: , где и выражаем через неё значения базисных неизвестных и из уравнений системы специального (трапециевидного) вида, начиная с последнего уравнения: . Тогда общее решение системы, задающее множество всех собственных векторов , отвечающих собственному числу , будет иметь вид: , .

Ответ: , , , ;

, , .

3. Дана система уравнений: . Требуется:

а) найти решение системы методом Крамера; б) записать систему в матричном виде и найти её решение методом обратной матрицы; в) найти решение системы методом Гаусса.

Решение.

А) Метод Крамера.

1а) Вычисляем определитель системы и проверяем, что он отличен от нуля:

.

2а) Так как , то система имеет единственное решение, определяемое формулами Крамера:

3а) Вычисляем определители :

,

,

.

4а) Находим решение: .

5а) Выполняем проверку: .

Ответ: .

Б) Метод обратной матрицы.

1б) Записываем систему уравнений в матричном виде:

или

2б) Вычисляем определитель системы и проверяем, что он отличен от нуля:

3б) Так как , то матрица системы имеет обратную матрицу и единственное решение системы определяется формулой:

или

4б) Находим обратную матрицу (методом присоединённой матрицы):

.

Тогда .

5б) Находим решение:

.

6б) Выполняем проверку: .

Ответ: .

В) Метод Гаусса.

1в) Записываем расширенную матрицу системы:

.

2в) Выполняем прямой ход метода Гаусса.

В результате прямого хода матрица системы должна быть преобразована с помощью элементарных преобразований строк к матрице треугольного или трапециевидного вида с элементами . Система уравнений, матрица которой является треугольной с элементами , имеет единственное решение, а система уравнений, матрица которой является трапециевидной с элементами , имеет бесконечно много решений.

. В результате элементарных преобразований матрица системы преобразована к специальному виду . Система уравнений, матрица которой , является треугольной с ненулевыми диагональными элементами , имеет всегда единственное решение, которое находим, выполняя обратный ход.

Замечание. Если при выполнение преобразования расширенной матрицы в преобразованной матрице появляется строка , где , то это говорит о несовместности исходной системы уравнений.

3в) Выполняем обратный ход метода Гаусса.

Записываем систему уравнений, соответствующую последней расширенной матрице прямого хода: и последовательно из уравнений системы, начиная с последнего, находим значения всех неизвестных: .

4в) Выполняем проверку: .

Ответ: .

 

 

4. Найти общее решение для каждой из данных систем методом Гаусса:

а) .

Решение.

1а) Записываем расширенную матрицу системы:

.

2а) Выполняем прямой ход метода Гаусса.

.

Матрица системы приведена к трапециевидному виду с ненулевыми диагональными элементами. Соответствующая такой матрице система уравнений имеет бесконечно много решений, которые находим, выполняя обратный ход, и записываем в виде общего решения. Для записи общего решения указываем её базисные и свободные неизвестные. Базисный минор матрицы системы образуют столбцы коэффициентов при неизвестных и : . Поэтому выбираем в качестве базисных – неизвестные и , тогда свободными будут неизвестные и .

3а) Выполняем обратный ход метода Гаусса.

Записываем систему уравнений, соответствующую последней расширенной матрице прямого хода: . Свободным неизвестным придаём разные, произвольные постоянные значения: , , и последовательно из уравнений системы, начиная с последнего, находим значения всех базисных неизвестных: .

Тогда общее решение системы запишется в виде: .

4а) Выполняем проверку:

.

Ответ: .

б) .

Решение.

1а) Записываем расширенную матрицу системы:

.

2а) Выполняем прямой ход метода Гаусса.

Замечание. В результате прямого хода матрица системы должна быть преобразована с помощью элементарных преобразований строк к матрице треугольного или трапециевидного вида с элементами .

Если, при выполнении преобразования расширенной матрицы , в преобразованной матрице появляется строка , где , то это говорит о несовместности исходной системы уравнений.

Для выполнения условия может потребоваться перестановка местами столбцов матрицы системы. Если при выполнении преобразований прямого хода в матрице системы переставлялись местами столбцы коэффициентов при неизвестных, то в дальнейшем, при записи системы уравнений, соответствующей последней расширенной матрице прямого хода, это следует учесть.

.

Матрица системы приведена к трапециевидному виду с ненулевыми диагональными элементами. Соответствующая такой матрице система уравнений имеет бесконечно много решений, которые находим, выполняя обратный ход, и записываем в виде общего решения. Для записи общего решения указываем её базисные и свободные неизвестные. Базисный минор матрицы системы, с учётом перестановки местами столбцов, образуют первый и второй столбцы коэффициентов при неизвестных и : . Поэтому выбираем в качестве базисных – неизвестные и , тогда свободными будут неизвестные и .

3б) Выполняем обратный ход метода Гаусса.

Записываем систему уравнений, соответствующую последней расширенной матрице прямого хода: . Свободным неизвестным придаём разные, произвольные постоянные значения: , , и последовательно из уравнений системы, начиная с последнего, находим значения всех базисных неизвестных: .

Тогда общее решение системы запишется в виде:

4б) Выполняем проверку:

Ответ: .

в) .

Решение.

1в) Записываем расширенную матрицу системы:

.

2в) Выполняем прямой ход метода Гаусса.

.

При выполнении преобразования расширенной матрицы , в преобразованной матрице появилась строка , соответствующая уравнению , которому не удовлетворяет ни один набор значений неизвестных , что говорит о несовместности исходной системы уравнений.

Ответ: Система несовместна.

5. Исследовать квадратичную форму на знакоопределённость (по критерию Сильвестра).

а) ; б)

Решение.

1а) Записываем матрицу квадратичной формы: .

2а) Проверяем является ли матрица невырожденной. Для этого вычисляем её определитель и проверяем, равен ли он нулю: . Так как , то матрица - невырожденная и, следовательно, для исследования квадратичной формы на знакоопределённость можно применить критерий Сильвестра.

3а) Вычисляем угловые миноры матрицы и делаем вывод о знакоопределённости квадратичной формы: , , . Так как выполняется условие: , , , то по критерию Сильвестра квадратичная форма положительно определена.

Ответ: Квадратичная форма положительно определена.

1б) Записываем матрицу квадратичной формы: .

2б) Вычисляем её определитель и проверяем, равен ли он нулю: . Так как , то матрица - невырожденная и, следовательно, для исследования квадратичной формы на знакоопределённость можно применить критерий Сильвестра.

3б) Вычисляем угловые миноры матрицы и делаем вывод о знакоопределённости квадратичной формы: , , . Так как два угловых минора нечётного порядка имеют разные знаки: , , то по критерию Сильвестра квадратичная форма знакопеременна.

Ответ: Квадратичная форма знакопеременна.

 

6. Даны векторы : ; ; ; . Требуется: а) вычислить скалярное произведение векторов , если , ; б) вычислить векторное произведение векторов ; в) показать, что векторы образуют базис и найти координаты вектора в этом базисе.

Решение.

1a). Находимвектор

= .

2а) Находимвектор

= .

3а) Вычисляем скалярное произведениевекторов :

.

б) Вычисляем векторное произведение векторов :

=

1в) Покажем, что векторы образуют базис . Для этого составим определитель, столбцами которого являются координаты этих векторов и покажем, что он отличен от нуля.

.

Так как , то векторы образуют базис и, следовательно, вектор единственным образом можно разложить по векторам этого базиса.

2в) Записываем разложение вектора по векторам базиса :

или .

Коэффициенты разложения , , называют координатами вектора в базисе и записывают: .

3в) Записываем векторное уравнение относительно , , в виде эквивалентной ему системы линейных уравнений: , и находим единственное решение системы, например, по формулам Крамера:

, где

, , , .

Таким образом: , , . Следовательно, разложение имеет вид: или кратко: .

Ответ: .

7. Даны вершины треугольника : , , Требуется найти:

а) длину стороны ; б) уравнение стороны ;

в) уравнение медианы , проведённой из вершины ;

г) уравнение высоты , проведённой из вершины ;

д) длину высоты ; е) площадь треугольника . Сделать чертёж.

Решение. Сделаем чертёж:

 

 

а) Длинустороны находим как длину вектора :

,

.

б) Уравнение стороны находим как уравнение прямой, проходящей через точки и , и записываем его в виде общего уравнения прямой:

.

в) Уравнение медианы находим как уравнение прямой, проходящей через точки и , и записываем его в виде общего уравнения прямой. Неизвестные координаты точки находим как координаты точки, делящей сторону пополам:

; .

Тогда:

.

г) Уравнение высоты находим как уравнение прямой, проходящей через точку перпендикулярно вектору , который принимаем за нормальный вектор прямой . Тогда

д) Длину высоты находим как расстояние от точки до прямой , заданной общим уравнением :

.

е) Площадь треугольника находим по формуле: . Откуда .

Ответ: а) ; б) ; в) ;

г) ; д) ; е) .

 



Поделиться:


Последнее изменение этой страницы: 2016-09-19; просмотров: 200; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.97.189 (0.161 с.)