Ультрафиолетовое излучение. Первичные механизмы действия ультрафиолетового излучения на биологические объекты. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Ультрафиолетовое излучение. Первичные механизмы действия ультрафиолетового излучения на биологические объекты.



Ультрафиолетовое излучение. Первичные механизмы действия ультрафиолетового излучения на биологические объекты.

Электромагнитное излучение, занимающее спектральную область между фиолетовой границей видимого света (l= 400 нм) и длинноволновой частью рентгеновского излучения (l= 10 нм), называют ультрафиолетовым (УФ).

В медицине находит применение УФ, длинна волны которого выше 200 нм.

 

 

 

 

 

Значительная доля излучения накаленных твердых тел при высоких температурах - УФ-излучение. Если максимум светимости нагретого тела находится в УФ области спектра, то температура этого тела больше 7000 К. Т. е. в обычных условиях нагре0тые тела не могут служить эффективными источниками УФ-излучения.

Мощным источником УФ-излучения является Солнце, 9% излучения которого на границе земной атмосферы составляет УФ.

Для практических целей в качестве источников УФ-излучения используют электрический разряд в газах и парах металлов. Такое излучение характеризуется линейчатым спектром.

Энергия кванта света УФ-излучения достаточна для перевода атома или молекулы в электронно-возбужденное состояние. Максимумы спектров поглощения сложных биологических молекул лежат именно в области УФ (рис.3.1). Избыточная энергия атома или молекулы в электронно-возбужденном состоянии тратится либо на химические реакции молекулы, либо на люминесценцию.

 

 


 

Рис. 1. Спектры поглощения и флюоресценции некоторых биологически важных соединений. Сплошные кривые – оптическая плотность, кривые пунктиром – интенсивность флюоресценции.

 

 


Работа люминесцентных микроскопов основана на интенсивной флюоресценции (видимая область спектра) некоторых биологических объектов, поглощаемых свет в УФ. Основное применение УФ-излучения в медицине связано со свойством УФ вызывать фотохимические процессы. УФ (области В и А) обладает антирахитным действием, так как фотохимическим путем образует витамин Д из его провитамина (спектр поглощения лежит в областях А и В УФ). Эти же области УФ играют важную роль в образовании пигмента, который придает коже коричневую окраску. Излучение области С УФ вызывает разрушение биологически важных молекул, поэтому используется в медицине в качестве бактерицидного фактора. Это свойство используют для предотвращения распространения заразных болезней и стерилизации помещения, в котором проводятся микробиологические работы. УФ может быть при избыточном воздействии причиной конъюнктивита (область С) и рака (область В).

Измерение УФ-излучения в основном осуществляется фотоэлектрическими приёмниками: фотоэлементами, ФЭУ. Индикаторами УФ света являются люминесцирующие вещества и фотопластинки.

Источником УФ-излучения, применяемого для лечебных и профилактических целей, являются специальные газоразрядные лампы: ртутно-кварцевые, бактерицидные и другие.

 

Рис. 6. Системы синглетных и триплетных энергетических уровней молекулы.

Вопрос 5. 5 минут

Люминесцентный анализ. Люминесцентные метки и зонды. Медицинское применение люминесцентных методов

Исследования.

Фотолюминесценция наблюдается у многих жидких и твердых тел как неорганической, так и органической природы, особенно под действием ультрафиолетового излучения.

Определение природы и состава вещества по спектру его люминесцентного излучения, называется люминесцентным анализом. Люминесцентный анализ позволяет обнаруживать люминесцентные вещества в количестве до 10-10 г. Люминесцентный анализ используют для обнаружения начальной стадии порчи продуктов, сортировки фармакологических препаратов и диагностики некоторых заболеваний. Под действием ультрафиолетового излучения флуоресцируют многие ткани организма (ногти, зубы, непигментированные волосы, роговая оболочка, хрусталик глаза и другие). В некоторых случаях по характеру свечения можно отличить патологически измененные ткани. Характерное свечение дают бактериальные и грибковые колонии. В связи с этим люминесцентный анализ применяется при диагностике многих заболеваний, особенно в области дерматологии.

При люминесцентной микроскопии исследуются естественные препараты, имеющие собственную флуоресценцию или окрашенные флуоресцирующими красками. Источником света являются лампы ртутные высокого и сверхвысокого давления и применяются два светофильтра, один из которых расположен перед конденсатором и выделяет область спектра источника света, которая вызывает люминесценцию объекта; другой находящийся после объектива, выделяет свет люминесценции. Оптика микроскопа может быть обычной, так как через нее проходит уже видимый свет, возникший на препарате в результате флуоресценции.

Только небольшое число соединений характеризуется люминесценцией с высоким квантовым выходом. Эти соединений используют для изучения процессов, происходящих со слаболюминесциирующими или совсем не люминесциирующими соединениями. Для этого соединения из первой группы связывают с изучаемыми молекулами. Если связь ковалентная, то говорят о люминесцентных метках, если – более слабая (водородная, гидрофобная), то говорят о люминесцентных зондах.

Например, существуют соединения, которые не флуоресцируют в водных растворах, но сильно флуоресцируют, если они связаны с гидрофобными областями белков. В этом случае флуоресцентные свойства таких молекул могут быть использованы для того, чтобы охарактеризовать конформацию белка вблизи связывающего центра. Например, анилинонафталинсульфат (АНС) слабо флуоресцирует в водной среде и в других полярных растворителях; в неполярных растворителях интенсивность его флуоресценции сильно возрастает. Это свойство было использовано для доказательства гидрофобного характера места связывания гема в миоглобине, т. к. АНС связывается с миоглобином в месте связывания гема. Квантовый выход флуоресценции АНС в воде равен 0,04, а в комплексе с апомиоглобином - почти единице. (Апомиоглобином называется миоглобин без гемовой группы).

 

Ультрафиолетовое излучение. Первичные механизмы действия ультрафиолетового излучения на биологические объекты.

Электромагнитное излучение, занимающее спектральную область между фиолетовой границей видимого света (l= 400 нм) и длинноволновой частью рентгеновского излучения (l= 10 нм), называют ультрафиолетовым (УФ).

В медицине находит применение УФ, длинна волны которого выше 200 нм.

 

 

 

 

 

Значительная доля излучения накаленных твердых тел при высоких температурах - УФ-излучение. Если максимум светимости нагретого тела находится в УФ области спектра, то температура этого тела больше 7000 К. Т. е. в обычных условиях нагре0тые тела не могут служить эффективными источниками УФ-излучения.

Мощным источником УФ-излучения является Солнце, 9% излучения которого на границе земной атмосферы составляет УФ.

Для практических целей в качестве источников УФ-излучения используют электрический разряд в газах и парах металлов. Такое излучение характеризуется линейчатым спектром.

Энергия кванта света УФ-излучения достаточна для перевода атома или молекулы в электронно-возбужденное состояние. Максимумы спектров поглощения сложных биологических молекул лежат именно в области УФ (рис.3.1). Избыточная энергия атома или молекулы в электронно-возбужденном состоянии тратится либо на химические реакции молекулы, либо на люминесценцию.

 

 


 

Рис. 1. Спектры поглощения и флюоресценции некоторых биологически важных соединений. Сплошные кривые – оптическая плотность, кривые пунктиром – интенсивность флюоресценции.

 

 


Работа люминесцентных микроскопов основана на интенсивной флюоресценции (видимая область спектра) некоторых биологических объектов, поглощаемых свет в УФ. Основное применение УФ-излучения в медицине связано со свойством УФ вызывать фотохимические процессы. УФ (области В и А) обладает антирахитным действием, так как фотохимическим путем образует витамин Д из его провитамина (спектр поглощения лежит в областях А и В УФ). Эти же области УФ играют важную роль в образовании пигмента, который придает коже коричневую окраску. Излучение области С УФ вызывает разрушение биологически важных молекул, поэтому используется в медицине в качестве бактерицидного фактора. Это свойство используют для предотвращения распространения заразных болезней и стерилизации помещения, в котором проводятся микробиологические работы. УФ может быть при избыточном воздействии причиной конъюнктивита (область С) и рака (область В).

Измерение УФ-излучения в основном осуществляется фотоэлектрическими приёмниками: фотоэлементами, ФЭУ. Индикаторами УФ света являются люминесцирующие вещества и фотопластинки.

Источником УФ-излучения, применяемого для лечебных и профилактических целей, являются специальные газоразрядные лампы: ртутно-кварцевые, бактерицидные и другие.

 



Поделиться:


Последнее изменение этой страницы: 2016-09-13; просмотров: 217; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.233.232.21 (0.013 с.)