ТОП 10:

Фундаментальные принципы управления



Фундаментальные принципы управления

Принято различать три фундаментальных принципа управления: принцип разомкнутого управления, принцип компенсации, принцип обратной связи.

Принцип компенсации

Если возмущающий фактор искажает выходную величину до недопустимых пределов, то применяют принцип компенсации (рис.6, КУ -корректирующее устройство).

Пусть yо - значение выходной величины, которое требуется обеспечить согласно программе. На самом деле из-за возмущения f на выходе регистрируется значение y. Величина e = yо - y называется отклонением от заданной величины. Если каким-то образом удается измерить величинуf, то можно откорректировать управляющее воздействие u на входе ОУ, суммируя сигнал УУ с корректирующим воздействием, пропорциональным возмущению fи компенсирующим его влияние.

На принц. Схеме цепи нагрев. эл-та стоит термосопротивление Rt, величина которого меняется в зависимости от колебаний температуры окружающей среды, корректируя напряжение на НЭ.

Достоинство принципа компенсации: быстрота реакции на возмущения. Он более точен, чем принцип разомкнутого управления. Недостаток: невозможность учета подобным образом всех возможных возмущений.

Принцип обратной связи

Наибольшее распространение в технике получил принцип обратной связи (рис.7). Здесь управляющее воздействие корректируется в зависимости от выходной величины y(t). И уже не важно, какие возмущения действуют на ОУ. Если значение y(t) отклоняется от требуемого, то происходит корректировка сигнала u(t) с целью уменьшения данного отклонения. Связь выхода ОУ с его входом называется главной обратной связью (ОС).

 

В частном случае (рис.8) ЗУ формирует требуемое значение выходной величины yо(t), которое сравнивается с действительным значением на выходе САУ y(t). Отклонение e = yо-y с выхода сравнивающего устройства подается на вход регулятора Р, объединяющего в себе УУ, УО, ЧЭ.Еслиe 0, то регулятор формирует управляющее воздействие u(t), действующее до тех пор, пока не обеспечится равенство e = 0, или y = yо. Так как на регулятор подается разность сигналов, то такая обратная связь называется отрицательной, в отличие от положительной обратной связи, когда сигналы складываются.

Такое управление в функции отклонения называется регулированием, а подобную САУ называют системой автоматического регулирования (САР).

Недостатком принципа обратной связи является инерционность системы. Поэтому часто применяют комбинацию данного принципа с принципом компенсации.


2.1. Основные виды САУ

В зависимости от принципа и закона функционирования ЗУ, задающего программу изменения выходной величины, различают основные виды САУ: системы стабилизации, программные, следящие и самонастраивающиеся системы, среди которых можно выделить экстремальные, оптимальные и адаптивные системы.

В системах стабилизации (рис.9,10) обеспечивается неизменное значение управляемой величины при всех видах возмущений, т.е. y(t) = const. ЗУ формирует эталонный сигнал, с которым сравнивается выходная величина. ЗУ, как правило, допускает настройку эталонного сигнала, что позволяет менять по желанию значение выходной величины.

В программных системах обеспечивается изменение управляемой величины в соответствии с программой, формируемой ЗУ. В качестве ЗУ может использоваться кулачковый механизм, устройство считывания с перфоленты или магнитной ленты и т.п. К этому виду САУ можно отнести заводные игрушки, магнитофоны, проигрыватели и т.п. Различают системы с временной программой (например, рис.1), обеспечивающие y = f(t), и системы с пространственной программой, в которых y = f(x), применяемые там, где на выходе САУ важно получить требуемую траекторию в пространстве, например, в копировальном станке (рис.11), закон движения во времени здесь роли не играет.

Следящие системы отличаются от программных лишь тем, что программа y = f(t) или y = f(x) заранее неизвестна. В качестве ЗУ выступает устройство, следящее за изменением какого-либо внешнего параметра. Эти изменения и будут определять изменения выходной величины САУ. Например, рука робота, повторяющая движения руки человека.

Все три рассмотренные вида САУ могут быть построены по любому из трех фундаментальных принципов управления. Для них характерно требование совпадения выходной величины с некоторым предписанным значением на входе САУ, которое само может меняться. То есть в любой момент времени требуемое значение выходной величины определено однозначно.

В самонастраивающихся системах ЗУ ищет такое значение управляемой величины, которое в каком-то смысле является оптимальным.

Так в экстремальных системах (рис.12) требуется, чтобы выходная величина всегда принимала экстремальное значение из всех возможных, которое заранее не определено и может непредсказуемо изменяться. Для его поиска система выполняет небольшие пробные движения и анализирует реакцию выходной величины на эти пробы. После этого вырабатывается управляющее воздействие, приближающее выходную величину к экстремальному значению. Процесс повторяется непрерывно. Так как в данных САУ происходит непрерывная оценка выходного параметра, то они выполняются только в соответствии с третьим принципом управления: принципом обратной связи.

Оптимальные системы являются более сложным вариантом экстремальных систем. Здесь происходит, как правило, сложная обработка информации о характере изменения выходных величин и возмущений, о характере влияния управляющих воздействий на выходные величины, может быть задействована теоретическая информация, информация эвристического характера и т.п. Поэтому основным отличием экстремальных систем является наличие ЭВМ. Эти системы могут работать в соответствии с любым из трех фундаментальных принципов управления.

В адаптивных системах предусмотрена возможность автоматической перенастройки параметров или изменения принципиальной схемы САУ с целью приспособления к изменяющимся внешним условиям. В соответствии с этим различают самонастраивающиеся и самоорганизующиеся адаптивные системы.

Все виды САУ обеспечивают совпадение выходной величины с требуемым значением. Отличие лишь в программе изменения требуемого значения. Поэтому основы ТАУ строятся на анализе самых простых систем: систем стабилизации. Научившись анализировать динамические свойства САУ, мы учтем все особенности более сложных видов САУ.

 

Статические характеристики

Режим работы САУ, в котором управляемая величина и все промежуточные величины не изменяются во времени, называется установившимся, или статическим режимом. Любое звено и САУ в целом в данном режиме описывается уравнениями статики вида y = F(u,f), в которых отсутствует время t. Соответствующие им графики называются статическими характеристиками. Статическая характеристика звена с одним входом u может быть представлена кривой y = F(u) (рис.13). Если звено имеет второй вход по возмущениюf, то статическая характеристика задается семейством кривых y = F(u) при различных значенияхf, или y = F(f) при различных u.

 

 

 

 

Так примером одного из функциональных звеньев системы регулирования воды в баке (см. выше) является обычный рычаг (рис.14). Уравнение статики для него имеет вид y = Ku. Его можно изобразить звеном, функцией которого является усиление (или ослабление) входного сигнала в K раз. КоэффициентK = y/u, равный отношению выходной величины к входной называется коэффициентом усиления звена. Когда входная и выходная величины имеют разную природу, его называют коэффициентом передачи.

Статическая характеристика данного звена имеет вид отрезка прямой линии с наклоном a = arctg(L2/L1) = arctg(K) (рис.15). Звенья с линейными статическими характеристиками называются линейными. Статические характеристики реальных звеньев, как правило, нелинейны. Такие звенья называются нелинейными. Для них характерна зависимость коэффициента передачи от величины входного сигнала:K = y/ u const.

Например, статическая характеристика насыщенного генератора постоянного тока представлена на рис.16. Обычно нелинейная характеристика не может быть выражена какой-либо математической зависимостью и ее приходится задавать таблично или графически.

 

 

 

Зная статические характеристики отдельных звеньев, можно построить статическую характеристику САУ (рис.17, 18). Если все звенья САУ линейные, то САУ имеет линейную статическую характеристику и называется линейной. Если хотя бы одно звено нелинейное, то САУ нелинейная.

Звенья, для которых можно задать статическую характеристику в виде жесткой функциональной зависимости выходной величины от входной, называются статическими. Если такая связь отсутствует и каждому значению входной величины соответствует множество значений выходной величины, то такое звено называется астатическим. Изображать его статическую характеристику бессмысленно. Примером астатического звена может служить двигатель, входной величиной которого является напряжение U, а выходной - угол поворота вала , величина которого при U = const может принимать любые значения. Выходная величина астатического звена даже в установившемся режиме является функцией времени.

 

 

Переходные характеристики

Дифференцирующее звено

Различают идеальное и реальное дифференцирующие звенья. Уравнение динамики идеального звена: y(t) = , или y = kpu. Здесь выходная величина пропорциональна скорости изменения входной величины. Передаточная функция: W(p) = kp. При k = 1 звено осуществляет чистое дифференцирование W(p) = p. Переходная характеристика:h(t) = k 1’(t) = d(t).

Идеальное дифференцирующее звено реализовать невозможно, так как величина всплеска выходной величины при подаче на вход единичного ступенчатого воздействия всегда ограничена. На практике используют реальные дифференцирующие звенья, осуществляющие приближенное дифференцирование входного сигнала.

Его уравнение: Tpy + y = kTpu.

Передаточная функция: W(p) = .

При малых Тзвено можно рассматривать как идеальное дифференцирующее. Переходную характеристики можно вывести с помощью формулы Хевисайда:

 

,

здесь p1 = - 1/T- корень характеристического уравненияD(p) = Tp + 1 = 0; кроме того, D’(p1) = T.

При подаче на вход единичного ступенчатого воздействия выходная величина оказывается ограничена по величине и растянута во времени (рис.42). По переходной характеристике, имеющей вид экспоненты, можно определить передаточный коэффициентk и постоянную времени Т. Примерами таких звеньев могут являться четырехполюсник из сопротивления и емкости или сопротивления и индуктивности, демпфер и т.п. Дифференцирующие звенья являются главным средством, применяемым для улучшения динамических свойств САУ.

Рис. 42

 

Кроме рассмотренных имеется еще ряд звеньев, на которых подробно останавливаться не будем. К ним можно отнести идеальное форсирующее звено (W(p) = Tp + 1, практически не реализуемо), реальное форсирующее звено (W(p) = , при T1 >> T2), запаздывающее звено (W(p) = e - pT), воспроизводящее входное воздействие с запаздыванием по времени и другие.

Запас устойчивости

Понятие запаса устойчивости

В условиях эксплуатации параметры системы по тем или иным причинам могут меняться в определенных пределах (старение, температурные колебания и т.п.). Эти колебания параметров могут привести к потере устойчивости системы, если она работает вблизи границы устойчивости. Поэтому стремятся спроектировать САУ так, чтобы она работала вдали от границы устойчивости. Степень этого удаления называют запасом устойчивости.

Согласно критерия Найквиста, чем дальше АФЧХ от критической точки (-1, j0), тем больше запас устойчивости. Различают запасы устойчивости по модулю и по фазе.

Запас устойчивости по модулю характеризует удаление годографа АФЧХ разомкнутой САУ от критической точки в направлении вещественной оси и определяется расстояниемh от критической точки до точки пересечения годографом оси абсцисс (рис.75).

Запас устойчивости по фазе характеризует удаление годографа от критической точки по дуге окружности единичного радиуса и определяется угломφ между отрицательным направлением вещественной полуоси и лучом, проведенным из начала координат в точку пересечения годографа с единичной окружностью.

Как уже отмечалось, с ростом коэффициента передачи разомкнутой САУ растет модуль каждой точки АФЧХ и при некотором значении K = Kкр АФЧХ пройдет через критическую точку (рис.76) и попадет на границу устойчивости, а при K > Kкрзамкнутая САУ станет неустойчива. Однако в случае “клювообразных” АФЧХ (получаются из-за наличия внутренних обратных связей) не только увеличение, но и уменьшение K может привести к потере устойчивости замкнутых САУ (рис.77). В этом случае запас устойчивости определяется двумя отрезками h1 и h2, заключенными между критической точкой и АФЧХ.

Обычно при создании САУ задаются требуемыми запасами устойчивости h и φ, за пределы которых она выходить не должна. Эти пределы выставляются в виде сектора, вычерчиваемого вокруг критической точки, в который АФЧХ разомкнутой САУ входить не должна (рис.78).

Частотные характеристики

Безынерционное звено

 

Передаточная функция:

W(p) = k.

АФЧХ: W(j ) = k.

ВЧХ: P( ) = k.

МЧХ: Q( ) = 0.

АЧХ: A( ) = k.

ФЧХ: ( ) = 0.

ЛАЧХ: L( ) = 20lgk.

Некоторые ЧХ показаны на рис.50. Звено пропускает все частоты одинаково c увеличением амплитуды в k раз и без сдвига по фазе.

Интегрирующее звено

 

Передаточная функция:

W(p) = k/p.

Рассмотрим частный случай, когда k = 1, то есть

W(p) = 1/p.

АФЧХ: W(j ) = .

ВЧХ: P( ) = 0.

МЧХ: Q( ) = - 1/ .

АЧХ: A( ) = 1/ .

ФЧХ: ( ) = - /2.

ЛАЧХ: L( ) = 20lg(1/ ) = - 20lg( ).

ЧХ показаны на рис.51. Все частоты звено пропускает с запаздыванием по фазе на 90о. Амплитуда выходного сигнала увеличивается при уменьшении частоты, и уменьшается до нуля при росте частоты (звено "заваливает" высокие частоты). ЛАЧХ представляет собой прямую, проходящую через точку L( ) = 0 при = 1. При увеличении частоты на декаду ордината уменьшается на 20lg10 = 20дб, то есть наклон ЛАЧХ равен - 20 дб/дек (децибел на декаду).

Апериодическое звено

 

При k = 1 получаем следующие выражения ЧХ:

W(p) = ;

;

;

;

( ) = 1 - 2 = - arctg( T);

;

L( ) = 20lg(A( )) = - 10lg(1 + ( T)2).

Здесь A1 и A2 - амплитуды числителя и знаменателя ЛФЧХ; 1 и 2 - аргументы числителя и знаменателя. ЛФЧХ:

ЧХ показаны на рис.52. АФЧХ есть полуокружность радиусом 1/2 с центром в точке P = 1/2. При построении асимптотической ЛАЧХ считают, что при < 1 = 1/T можно пренебречь ( T)2 выражении для L( ), то есть L( ) - 10lg1 = 0.. При > 1 пренебрегают единицей в выражении в скобках, то есть L(w) - 20lg(wT). Поэтому ЛАЧХ проходит вдоль оси абсцисс до сопрягающей частоты, затем - под наклоном - 20 дб/дек. Частота w1 называется сопрягающей частотой. Максимальное отличие реальных ЛАЧХ от асимптотических не превышает 3 дб при = 1.

ЛФЧХ асимптотически стремится к нулю при уменьшении w до нуля (чем меньше частота, тем меньше искажения сигнала по фазе) и к - /2 при возрастании до бесконечности. Перегиб в точке = 1 при ( ) = - /4. ЛФЧХ всех апериодических звеньев имеют одинаковую форму и могут быть построены по типовой кривой с параллельным сдвигом вдоль оси частот.

Законы регулирования

Пусть задана какая-то САР (рис.59).

Законом регулирования называется математическая зависимость, в соответствии с которой управляющее воздействие на объект вырабатывалось бы безынерционным регулятором.

Простейшим из них является пропорциональный закон регулирования, при котором

u(t) = Ke(t) (рис.60а),

где u(t) - это управляющее воздействие, формируемое регулятором, e(t) - отклонение регулируемой величины от требуемого значения, K - коэффициент пропорциональности регулятора Р.

То есть для создания управляющего воздействия необходимо наличие ошибки регулирования и чтобы величина этой ошибки была пропорциональна возмущающему воздействию f(t). Другими словами САУ в целом должна быть статической.

Такие регуляторы называют П-регуляторами.

Так как при воздействии возмущения на объект управления отклонение регулируемой величины от требуемого значения происходит с конечной скоростью (рис.60б), то в начальный момент на вход регулятора подается очень малая величина e , вызывая при этом слабые управляющие воздействия u. Для повышения быстродействия системы желательно форсировать процесс управления.

Для этого в регулятор вводят звенья, формирующие на выходе сигнал, пропорциональный производной от входной величины, то есть дифференцирующие или форсирующие звенья.

Такой закон регулирования называется пропорционально - дифференциальным:

u(t) = K1e(t) + K2 de(t)/dt.

В соответствии с ним работают ПД-регуляторы.

Чем быстрее нарастает отклонение регулируемой величины от требуемого значения, тем интенсивнее работает ПД-регулятор, что препятствует дальнейшему нарастанию данного отклонения. Кроме того при увеличении отклонения (de(t)/dt > 0) управляющий сигнал u будет больше, чем при уменьшении (de(t)/dt < 0), что также играет положительную роль, снижая колебательность процеса управления.

Добавление в регулятор двух дифференцирующих звеньев позволяет формировать управляющее воздействие по второй производной отклонения e , такой регулятор называется ПДД-регулятором.

Интегральный закон регулирования реализуется И-регулятором, его формулировка:

.

Этот регулятор наращивает управляющее воздействие до тех пор пока управляемая величина отличается от требуемого значения, то есть пока e(t) 0.

И-регулятор обеспечивает астатическое регулирование.

При малых e управляющее воздействие изменяется с малой скоростью, поэтому данный регулятор очень инерционный.

Чтобы увеличить быстродействие обычно последовательно с ним включают усилитель, это дает пропорционально-интегральный закон регулирования (ПИ-регулятор), его формула:

.

Первое слагаемое обеспечивает быстродействие, второе - астатичность, то есть точность регулирования.

Еще большее быстродействие обеспечивается при добавлении слагаемого, пропорционального производной от отклонения управляемой величины de/dt, такой закон регулирования обеспечивается ПИД-регулятором, его формула:

 

.

Фундаментальные принципы управления

Принято различать три фундаментальных принципа управления: принцип разомкнутого управления, принцип компенсации, принцип обратной связи.







Последнее изменение этой страницы: 2016-09-05; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.232.62.209 (0.018 с.)