Основные характеристики протона, нейтрона и электрона 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основные характеристики протона, нейтрона и электрона



Частица Символ Масса покоя Заряд, Кл
кг а.е.м.
протон р 1,678·10-27 1,007276 1,602·10-19
нейтрон п 1,675·10-27 1,008665  
электрон е 9,108·10-31 0,00549 1,602·10-19

 

Размеры и массы атомов малы. Радиус атомов составляет 10-10 м, а радиус ядра – 10-15 м. Масса атома определяется делением массы одного моль атомов элемента на число атомов в 1 моль (NA = 6,02·1023 моль-1). Масса атомов изменяется в пределах 10-27~ 10-25 кг. Обычно массу атомов выражают в атомных единицах массы (а.е.м.). За а.е.м. принята 1/12 массы атома изотопа углерода 12С.

Основными характеристиками атома являются заряд его ядра (Z) и массовое число (А). Число электронов в атоме равно заряду его ядра. Свойства атомов определяются зарядом их ядер, числом электронов и их состоянием в атоме.

Основные свойства и строение ядра (теория состава атомных ядер)

1. Ядра атомов всех элементов (за исключением водорода) состоят из протонов и нейтронов.

2.Число протонов в ядре определяет значение его положительного заряда (Z). Z - порядковый номер химического элемента в периодической системе Менделеева.

3. Суммарное число протонов и нейтронов - значение его массы, так как масса атома в основном сосредоточена в ядре (99, 97% массы атома). Ядерные частицы - протоны и нейтроны - объединяются под общим названием нуклоны (от латинского слова nucleus, что означает “ядро”). Общее число нуклонов соответствует - массовому числу, т.е. округленной до целого числа его атомной массе А.

A=N+Z

Ядра с одинаковыми Z, но различными А называются изотопами. Ядра, которые при одинаковом А имеют различные Z, называются изобарами. Всего известно около 300 устойчивых изотопов химических элементов и более 2000 естественных и искусственно полученных радиоактивных изотопов

4. Число нейтронов в ядре N может быть найдено по разности между массовым числом (А) и порядковым номером (Z):

N = A - Z

5. Размер ядра характеризуется радиусом ядра, имеющим условный смысл ввиду размытости границы ядра.

Плотность ядерного вещества составляет по порядку величины 1017кг/м3 и постоянна для всех ядер. Она значительно превосходит плотности самых плотных обычных веществ.

Протонно-нейтронная теория позволила разрешить возникшие ранее противоречия в представлениях о составе атомных ядер и о его связи с порядковым номером и атомной массой.

Энергия связи ядра определяется величиной той работы, которую нужно совершить, чтобы расщепить ядро на составляющие его нуклоны без придания им кинетической энергии. Из закона сохранения энергии следует, что при образовании ядра должна выделяться такая же энергия, какую нужно затратить при расщеплении ядра на составляющие его нуклоны. Энергия связи ядра является разностью между энергией всех свободных нуклонов, составляющих ядро, и их энергией в ядре.

При образовании ядра происходит уменьшение его массы: масса ядра меньше, чем сумма масс составляющих его нуклонов. Уменьшение массы ядра при его образовании объясняется выделением энергии связи. Если W св- величина энергии, выделяющейся при образовании ядра, то соответствующая ей масса Dm, равная

(53)

называется дефектом массы и характеризует уменьшение суммарной массы при образовании ядра из составляющих его нуклонов. Одной атомной единице массы соответствует атомная единица энергии (а.е.э.): а.е.э.=931,5016 МэВ.

Удельной энергией связи ядра w свназывается энергия связи, приходящаяся на один нуклон: w св= . Величина w свсоставляет в среднем 8 МэВ/нуклон. По мере увеличения числа нуклонов в ядре удельная энергия связи убывает.

Критерием устойчивости атомных ядер является соотношение между числом протонов и нейтронов в устойчивом ядре для данных изобаров. (А = const).

Ядерные силы

1. Ядерное взаимодействие свидетельствует о том, что в ядрах существуют особые ядерные силы, не сводящиеся ни к одному из типов сил, известных в классической физике (гравитационных и электромагнитных).

2. Ядерные силы являются короткодействующими силами. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10-15 м. Длина (1,5ј2,2)10-15 мназывается радиусом действия ядерных сил.

3. Ядерные силы обнаруживают зарядовую независимость: притяжение между двумя нуклонами одинаково независимо от зарядового состояния нуклонов - протонного или нуклонного. Зарядовая независимость ядерных сил видна из сравнения энергий связи в зеркальных ядрах. Так называются ядра, в которых одинаково общее число нуклонов, но число протонов в одном равно числу нейтронов в другом. Например, ядра гелия тяжелого водорода трития - .

4. Ядерные силы обладают свойством насыщения, которое проявляется в том, что нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему соседних нуклонов. Именно поэтому наблюдается линейная зависимость энергий связи ядер от их массовых чисел (А). Практически полное насыщение ядерных сил достигается у a-частицы, которая является очень устойчивым образованием.

Радиоактивность, g -излучение, a и b - распад

1. Радиоактивностью называется превращение неустойчивых изотопов одного химического элемента в изотопы другого элемента, сопровождающееся испусканием элементарных частиц, ядер или жесткого рентгеновского излучения. Естественной радиоактивностью называется радиоактивность, наблюдающаяся у существующих в природе неустойчивых изотопов. Искусственной радиоактивностью называется радиоактивность изотопов, полученных в результате ядерных реакций.

2. Обычно все типы радиоактивности сопровождаются испусканием гамма-излучения - жесткого, коротковолнового электроволнового излучения. Гамма-излучение является основной формой уменьшения энергии возбужденных продуктов радиоактивных превращений. Ядро, испытывающее радиоактивный распад, называется материнским; возникающее дочернее ядро, как правило, оказывается возбужденным, и его переход в основное состояние сопровождается испусканием g-фотона.

3. Альфа-распадом называется испускание ядрами некоторых химических элементов a - частиц. Альфа-распад является свойством тяжелых ядер с массовыми числами А >200 и зарядами ядер Z >82. Внутри таких ядер происходит образование обособленных a-частиц, состоящих каждая из двух протонов и двух нейтронов, т.е. образуется атом элемента, смещенного в таблице периодической системы элементов Д.И. Менделеева (ПСЭ) на две клеточки влево от исходного радиоактивного элемента с массовым числом меньшим не 4 единицы (правило Содди – Фаянса):

4. Термином бета-распад обозначают три типа ядерных превращений: электронный (b-) и позитронный (b+) распады, а также электронный захват.

b- распад происходит преимущественно у сравнительно богатых нейтронами ядер. При этом нейтрон ядра распадается на протон, электрон и антинейтрино () с нулевым зарядом и массой.

При b- распаде массовое число изотопа не изменяется, так как общее число протонов и нейтронов сохраняется, а заряд увеличивается на 1. Поэтому, атом образовавшегося химического элемента смещается ПСЭ на одну клеточку вправо от исходного элемента, а его массовое число не изменяется (правило Содди – Фаянса):

b+- распад происходит преимущественно у относительно богатых протонами ядер. При этом протон ядра распадается на нейтрон, позитрон и нейтрино ().

.

При b+- распаде массовое число изотопа не изменяется, так как общее число протонов и нейтронов сохраняется, а заряд уменьшается на 1. Поэтому, атом образовавшегося химического элемента смещается ПСЭ на одну клеточку влево от исходного элемента, а его массовое число не изменяется (правило Содди – Фаянса):

5. В случае электронного захвата превращение заключается в том, что исчезает один из электронов в ближайшем к ядру слое. Протон, превращаясь в нейтрон, как бы “захватывает” электрон; отсюда произошел термин ”электронный захват”. Электронный захват в отличие от b±-захвата сопровождается характеристическим рентгеновским излучением.

6. b--распад происходит у естественно-радиоактивных, а также искусственно-радиоактивных ядер; b+-распад характерен только для явления искусственной радиоактивности.

7. g- излучение: при возбуждении ядро атома испускает электромагнитное излучение с малой длиной волны и высокой частотой, обладающее большой жесткостью и проникающей способностью, чем рентгеновское излучение. В результате энергия ядра уменьшается, а массовое число и заряд ядра остаются не низменными. Поэтому превращение химического элемента в другой не наблюдается, а ядро атома переходит в менее возбужденное состояние.



Поделиться:


Последнее изменение этой страницы: 2016-08-26; просмотров: 2236; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.242.165.255 (0.01 с.)