Качественное обнаружение и количественное определение активности. Единицы активности (МE, катал). Удельная активность. Число оборотов ферментов. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Качественное обнаружение и количественное определение активности. Единицы активности (МE, катал). Удельная активность. Число оборотов ферментов.



Сопряженные ферментные системы их применение. Номенклатура, классификация ферментов (тривиальная, рациональная, систематическая). Принципы классификации.

 
 

Сопряженные реакции – используются в случаях, если нет возможности прямо определить количество продукта исследуемой реакции. В таких случаях в реагирующую смесь добавляется фермент (Е2) катализирующий превращение образующегося продукта в реакции, которую можно оценить количественно, одним из вышеперечисленных методов.

Если фермент Е2 присутствует в избытке, скорость образования C отражает скорость образования В.

Например, сопряженное исследование активности глюкокиназы (используется избыток глюкозо-6-фосфат дегидрогеназы и НАДФ+)

Глюкоза + AТФ → глюкоза 6-Ф + AДФ: (катализируется глюкокиназой –Е1)
Глюкоза-6-Ф + НАДФ+ → 6-фосфоглюконолактон + НАДФН + H+ : (катализируется глюкоза-6Ф –дегидрогеназой – Е2):

Скорость образования НАДФH (измеряется по поглощению при 340 нм) пропорциональна активности глюкокиназы (см выше)

 

В настоящее время известны и используются 3 вида классификации ферментов:

1. Тривиальная (исторически сложившаяся) номенклатура: (пепсин, трипсин).

2. Рациональная предложена французским физиологом П. Дюкло в 1883 году (к корню названия субстрата прибавляется суффикс

- аза (липид - липаза, протеин - протеаза и т.д.).

3. Современная классификация рассмотрена и утверждена V Всемирным биохимическим конгрессом в г. Москве в 1961 г. В основу ее положен тип катализируемой реакции (всего 6 классов):

1) Оксидоредуктазы: катализируют окислительно-восстановительные реакции, лежащие в основе биологического окисления. Название дается по схеме: донор: «акцептор-оксидоредуктаза» ---> лактат: НАД-оксидоредуктаза.

Различают аэробные дегидрогеназы или оксидазы, катализирующие перенос протонов (е) непосредственно на кислород; анаэробные дегидрогеназы ускоряющие перенос протонов (е) на промежуточный S, но не на кислород; цитохромы - катализируют перенос только е. Сюда также относятся каталаза и пероксидаза.

2) Трансферазы: ферменты, катализирующие перенос (внутри- и межмолекулярный) различных групп атомов. Название дается по форме: «донор - транспортируемая группа - трансфераза ---> метил-, формилтрансферазы, аминотрансферазы.

Оба этих класса ферментов работают при участии коферментов, которые являются водорастворимыми витаминами: В6, В12, В1, В15.

3) Гидролазы: ферменты, катализирующие расщепление внутримолекулярных связей при участии молекулы воды.

Название: «субстрат-гидролаза». К ним относятся все ферменты ЖКТ; в частности: эстеразы - гидролиз сложных эфиров; гликозидазы - гидролиз гликозидных связей углеводов; пептидгидролазы - гидролиз пептидных связей.

4) Лиазы - ферменты, расщепляющие C-C, C-N, C-O связи не гидролитическим путем с образованием двойной связи. Название: «субстрат-лиаза». Они обеспечивают отщепление CO2, H2O, NH3. Декарбоксилазы.

5) Изомеразы: ферменты, катализирующие различные типы реакций изомеризации. Сюда относятся рацемазы и эпимеразы.

6) Лигазы (синтетазы) - ферменты, катализирующие синтез органических веществ из 2-х исходных молекул с использованием энергии АТФ. Название: «X-Y-лигаза». X и Y - исходные вещества. Например: глутомат-аммиак-лигаза.

Кроме всего этого все существующие ферменты (более 2000) имеют свой цифровой шифр, который присваивается по 4-х значному коду. Т. о. шифр каждого фермента состоит из 4-х цифр, разделенных точками и составляется по следующему принципу.

Первая цифра указывает на номер одного из классов ферментов.

Вторая цифра озночает подкласс, который характеризует тип связи, на которую действует фермент.

Третья цифра означает подподкласс, который характеризует химическую природу донора или акцептора, участвующего в реакции.

Четвертая цифра обозначает порядковый номер фермента.

Алкогольдегидрогеназа (АДГ); КФ: 1. 1. 1. 1.

Лактатдегидрогеназа (ЛДГ); КФ: 1. 1. 1. 27.

 

ЛДГ4,5

в печени: ПВК -----> лактат

ЛДГ1,2

в сердце: лактат ------> ПВК

ЛДГ - олигомерный фермент, состоящий из 4-х субъединиц 2 типов.

H (heart) и M (muscle).

Существует 5 изоферментных форм:

HHHH HHHM HHMM HMMM MMMM

H4 H3M H2M2 HM3 M4

ЛДГ1, ЛДГ2, ЛДГ3, ЛДГ4, ЛДГ5.

Поскольку H-протомеры несут более выраженный отрицательный заряд, то изофермент H4 (ЛДГ1) будет мигрировать при электрофорезе с наибольшей скоростью к аноду.

С наименьшей скоростью к аноду будет двигаться М4.

Остальные изоферменты занимают промежуточное положение.

Изоферменты ЛДГ локализованы в различных тканях:

ЛДГ1,2 ----> мозг, аэробные ткани (миокард).

ЛДГ3 ----> лейкозные клетки.

ЛДГ4,5 ----> анэробные ткани: мышечная, скелетная.

Изоферменты появляются на различных этапах онтогенеза и реализуют программу индивидуального развития.

Изоферментный профиль меняется в процессе развития.

При патологиях имеется существенный изоферментный сдвиг.

Метаболон – мультиферментный комплекс, состоящий из белков-ферментов обладающих всеми уровнями структурной организации и катализирующих отдельные метаболические пути. Эти комплексы обычно связаны с клеточными мембранами, играют важную роль в эволюции живых систем, поскольку обеспечивают высокую скорость катализа, тонкую, точную регуляцию и направленность (векторность) метаболизма во времени и пространстве.

В промежуточном метаболизме имеются мультиферментные комплексы, катализирующие сложную многостадийную реакцию окислительного декарбоксилирования 2-кетокислот и переноса образующегося ацильного остатка на кофермент А. В качестве акцептора электронов выступает НАД+. Кроме того, в реакции участвуют тиаминдифосфат, липоамид и ФАД. К дегидрогеназам кетокислот относятся:
а) пируватдегидрогеназный комплекс (ПДГ, пируват→ацетил-КоА),
б) 2-оксоглутаратдегидротеназный комплекс цитратного цикла (ОГД, 2-оксоглутарат→сукцинил-КоА) и в) участвующий в катаболизме разветвленных цепей валина, лейцина и изолейцина дегидрогеназный комплекс. Примером является ПДГ-комплекс.

Энзимодиагностика.

Еще Вольгемут показал, что при заболевании поджелудочной железы в моче и крови обнаруживается высокая активность амилазы.

Так при заболевании костей имеет место высокая активность щелочной фосфатазы, при заболевании простаты - кислой фосфатазы.

Таким образом энзимодиагностика базируется на идее органоспецифичности и компартментолизации ферментов в клетке.

При заболевании увеличивается проницаемость мембран и вследствие нарушения градиента концентраций ферментов между внутриклеточной и межклеточной средами, ферменты выходят из клетки и попадают в кровь, мочу.

Наилучшим источником диагностических ферментов является сыворатка крови. Активность ферментв в сыворотке прямо пропорциональна поражению органа: чем больше активность - тем серьезней повреждение. Нужно отметить, что все антикоагулянты являются ингибиторами плазменных ферментов.

Энзимодиагностика имеет 2 направления:

1. Ранняя диагностика.

Так при гепатитах активность трансаминаз (АсАТ АлАТ) повышается гораздо раньше, чем билирубин проникает в ткани и вызовет желтуху, и значительно раньше, чем возникает недомагание.

Путем определения активности АсАТ и АлАТ можно диагнозировать гепатит за 2-е недели до появления желтухи.

2. Дифференциальная дигностика.

Так например заболевание печени делится на 3 группы.

Кроме этого нужно отметить, что АсАТ АлАТ одинаково представлены в печени и миокарде, поэтому при повреждении того и другого активность их увеличивается. Но при заболевании сердца (инфаркте) преобладает активность АсАТ. При отсром гепатите - АлАТ.

АлАТ

При гепатите коэф. < 0,6 (увеличивается активность АлАТ).

Если коэф. > 2 (увеличивается активность АсАТ), то это инфаркт миокарда; уровень держится 2-3 суток, к концу 1 недели падает.

Для оценки степени тяжести заболеваний также определяется активность ферментов. Так при мягких формах гепатита сначала увеличивается ативность фермента цитоплазмы гепатоцита - дегидрогеназы. При тяжелых формах - увеличивается активность митохондриального фермента глутаматдегидрогеназы.

Этим же путем можно дифференцировать гепатит и некроз печени. При гепатите наблюдается высокая активность билирубина и АлАТ, при некрозе - активность билирубина увеличивается, а АлАТ уменьшается.

Следует отметить, что при заболеваниях может наблюдаться 3 состояния ферментов:

1) гипоферментемия (снижена активность в плазме). Наблюдается при поражении того органа в котором синтезируется данный фермент, например при гепатите уменьшается активность холинэстеразы, синтезируемой в гепатоцитах. Так, на высоте заболевания панкреотитом, снижается активность амилазы, что ведет к некрозу.

2) Нормоферментемия, может сопровождаться дисферментемией, характерно для текущих процессов - цирроз печени.

3) Гипеферментемия встречается чаще всего.

Некоторые примеры использования измерения активности ферментов в диагностике

Фосфатаза - фермент, который не имеет выраженной субстратной специфичности к орга­ническим эфирам фосфорной кислоты. По рН-оптимумам различают кислую и щелочную фосфатазы. Высокой активностью кислой фосфатазы отличается предстательная железа. При раке предстательной железы активность этого фермента увеличивается в сыворотке крови. Щелочная фосфатаза находится во многих органах, особенно в костной ткани и печени. Подобно ЛДГ существуют органоспецифические изоферменты щелочной фосфатазы. Печеночная фосфатаза, хотя и является клеточным фер­ментом (лизосомы), в небольших количествах выделяется с желчью в кишечник. Поэтому при нарушении оттока желчи (желчекаменная болезнь, опухоль) часть фосфатазы всасывается в кровь. Этот эффект мо­жет иметь место при повреждении печеночных клеток. Повреждение печени нередко сопровождаются желтухами. Энзимодиагностическое исследование кислой фосфатазы используется для дифференциальной диагностики жел­тух. Такая диагностика важна для врача при выборе методов лечения. Дело в том, что раз­ные типы желтух требуют принципиально разного лечения: хирургическое - в случае закупорки желчного протока и консервативное - при паренхиматозном повреждении печени. Активность щелочной фосфатазы повышается при патологических процессах в костной ткани (метастазы в кость или распад костей). Различить изоферменты фосфатазы из пече­ни и костей можно на основании их различной чувствительности к мочевине. После до­бавления определенного количества мочевины остаточная активность связана с печеноч­ной фосфатазой, ибо она не ингибируется мочевиной.

Таблица 2-4 Примеры ферментов, используемых для энзимодиагностики заболеваний..
Фермент Основные источники основное клиническое приложение
Кислая фосфатаза Предстательная железа, эритроциты Рак предстательной железы
Аланин аминотрансфераза Печень, скелетная мышца, сердце Болезни печеночной парехимы
Альдолаза Скелетная мышца, сердце Болезни мышц
Щелочная фосфатаза Печень, кость, слизистая оболочка кишечника, плацента, почки Болезни костной ткани, болезни печени
Амилаза Слюнные железы, поджелудочная железа, яичники Заболевания поджелудочной железы
Аспартат аминотрансфераза Печень, скелетная мышца, сердце, почки, эритроциты Инфаркт миокарда, болезни печеночной паренхимы, мышц
Холинэстераза Печень Отравление фосфорорганическими инсектицидами, болезни печени
Креатинкиназа Скелетная и гладкая мышцы, мозг, сердце, Инфаркт миокарда, болезни мышц
Глутаматдегидрогеназа Печень Болезни печеночной паренхимы
g-Глутамил транспептидаза. Печень, почки Гепатобилиарные болезни, алкоголизм
Лактатдегидрогеназа Сердце, печень, скелетная мышца, эритроциты, тромбоциты, лимфатические узлы Инфаркт миокарда, гемолиз, болезни печеночной паренхимы
5 ' нуклеозидаза. Гепатобилиарный тракт Гепатобилиарные болезни
Сорбитдегидрогеназа. Печень Болезни паренхимы печени
Трипсин (оген) Поджелудочная железа Заболевания поджелудочной железы

 

Глутамилтранспептидаза (g-ГТ) является печеночным ферментом и имеет значение для диагно­стики нарушений печени. При паренхиматозных заболеваниях печени, расстройстве функции желчевыделительной системы часто намного раньше других клеточных фермен­тов в сыворотке крови повышается активность g-глутамилтранспептидазы (ранняя диагно­стика). Она же остается повышенной гораздо дольше всех остальных ферментов.

 

4.2. Энзимотерапия. Примеры. Иммобилизованные ферменты, липосомы, тени эритроцитов, вирусные векторы. Биотехнология.

Ферменты, которые обнаруживаются в норме в плазме крови делятся на 3 группы:

1. Секреторные - они синтезируются в печени и выделяются в плазму крови: ферменты гемостаза, холинэстераза.

2. Индикаторные (клеточные). Одни из них локализованы в цитоплазме (ЛДГ), другие - в митохондриях (ГДГ), третьи - в лизосомах (кислая фосфотаза). Большая часть индикаторных ферментов в плазме определяется лишь в следовых количествах, и только при поражении каких-либо тканей их активность резко возрастает.

3. Экскреторные (ИАП, щелочная фосфотаза) - синтезируются в основном в печени и выделяются с желчью. При патологических процессах их выделение с желчью нарушается и активность в плазме возрастает.

Энзимотерапия.

Способ лечения с помощью ферментов - энзимотерапия.

Применяетя заместительная терапия при недостаточности ферментов ЖКТ (желудочный сок, продукты поджелудочной железы, стимулирующие HCl, алахол - стимулятор липазной активности.

Ферменты применяются для апликаций, ингаляций при гнойных заболеваниях легких.

Ферменты: РНКазы, ДНКазы, гиалуронидаза, коллагеназы, эластазы используются для обработки ран, воспалительных очагов, ожогов, для устранения отеков.

Для лечения заболеваний ССС применяются кашикрины (для снижения кровяного давления), стрептодеказа (ведет к снижению зоны инфаркта миокарда).

В последнее время применяются иммобилизованные ферменты, т. е. фиксированные на чем либо. Такие ферменты обладают повышенной стабильностью, сниженной антигенностью и более длительным действием в организме.

В настоящее время открыт новый способ введения иммобилизованных ферментов, при помощи микосом. Микосомы - мелкие частицы эмульгированного жира содержащие ферменты, окруженные несколькими фосфониаледными оболочками.

Липосомы - хорошие носители лекарств, они биосовместимы, не вызывают иммунологических реакций и с их помощью можно вводить ферменты внутрь клеток. С помощью микосом были введены, растворяющие мельчайшие шарики, необходимые для трансферации эндотелия в месте образования тромба.

Предпринимались попытки применения ферментов для лечения злокачественных опухолей, например аспарагиназы при лечении лимфогранулематоза. Этот фермент разрушает АСН, является незаменимым фактором для лейкозных клеток.


Качественное обнаружение и количественное определение активности. Единицы активности (МE, катал). Удельная активность. Число оборотов ферментов.

О скорости ферментативной реакции судят или по скорости убыли субстрата, или по скорости образования продукта.

За единицу активности любого фермента (Е) принимается то количество фермента которое в оптимальных условиях катализирует превращение 1 мкмоля субстрата в 1 мин.

Существует другая единица активности:

1 катал - количество фермента, который катализирует превращения 1 моля субстрата в 1 секунду.

1 Е фермента = 16,67 нкатал.

Для выражения активности фермента пользуются определением удельной и молекулярной активности.

Удельная активность - число Е ферментативной активности в расчете на 1 мг белка.

Чем выше очистка фермента, тем выше удельная активность.

Число оборотов фермента (молекулярная активность) - число молекул S,подвергающихся превращению одной молекулой фермента в 1 минуту. (Или число элементарных актов катализа, осуществляемой 1 молекулой фермента за 1 минуту).

Число оборотов широко варьирует, например:

1. Карбоангидраза (катализирует перенос Н2СО3) совершает 36 000 000 оборотов.

2. Каталаза - 4000 оборотов.

3. Фосфоглюкомутаза - 1240 об/мин.

Для качественного обнаружения и количественного определения активности сложных ферментов используют следующие методы: ЛДГ CH3 CH3

лактат -------- ПВК CH-ОН ------- С=О

НАД НАД.Н+Н COOH COOH

НАД.Н интенсивно поглощает свет (=340 нм). По изменению ПВК можно судить о НАДН.

На одну молекулу лактата образуется одна молекула НАД.Н.

НАД.Н интенсивно флюоресцирует. Интенсивность флюоресценции будет пропорциональна концентрации.

В общем виде под активностью понимают количество фермента или биологического материла, содержащего фермент, которое при определенных условиях катализирует в единицу времени превращение определенного количества реагента, называемого субстратом. Активность - это изменение количества субстрата под влиянием фермента в единицу времени. Под изменением субстрата понимают снижающееся в единицу времени количество субстрата или же увеличивающееся количество продукта. Понятие "активность фермента" по сути дела идентична понятию "скорость ферментативной" реакции. Ферментативная активность выражается в единицах активности. В связи с существованием различных систем единиц исчисления введена интернациональная (стандартная) единица активности. Она носит символ "U" (unit-единица) и определяется как 1 мкмоль субстрата/мин. В системе СИ в качестве единицы ферментативной активности используют "катал" (kat). Катал определяется как 1 моль/сек.

1kat = 1 моль/сек.

Размерность её слишком велика, на практике пользуются меньшими кратными значениями, начиная с нанокатала (нкат). Это одна миллиардная катала или 10-9 кат. В сравнении с международной единицей следующее уравнение

1 U = 16,67 нкат

В практике лабораторий широко пользуются понятием удельная активность. Для этого число cтандартных единиц пересчитывают на какую-либо единицу сравнения. Это может быть мг белка в пробе или объем исследуемой биологической жидкости. Определение активности ферментов широко распространено в любой современной клинической лаборатории.

При исследовании кинетики реакций используется и такое понятие как молекулярная активность. Она показывает, сколько молекул субстрата в секунду превращаются в продукт 1 молекулой фермента и используется для сравнительной характеристики активности нескольких ферментов.

Пример вычисления активности фермента:

Исходные данные: Через 10 мин:
25.0 x 10-3 моль л--1 пептида-субстрата, объем реакционной смеси 2.5 мл, 0.50 µг химотрипсина[1] 18.6 x 10-3 моль л--1 пептида -субстрата, Объем реакционной смеси 2.5 мл, 0.50 µг химотрипсина.
Использованный субстрат = 6.4 x 10-3 моль л-1 за 10 мин
Скорость реакции = 6.4 x 10-4 моль л-1 мин-1
Активность Фермента (скорость x объем) = 6.4 x 10-4 моль л-1 мин-1 x 2.5 x 10-3 л = = 1.6 x 10-6 моль мин-1
Удельная активность (активность / масса) = 1.6 x 10-6 моль мин-1 / 0.50 µг = = 3.2 x 10-6 моль µг-1 мин-1
Число оборотов (уд. акт. x молярная масса) = 3.2 x 10-6 моль µг-1 мин-1 x 25,000 x 106 µг моль-1 = 8.0 x 104 мин-1 =1330 сек-1

Если удельная активность, рассчитанная выше, относится к чистому химотрипсину, образец, давший, например, удельную активность 2.0 x 10-7 моль µг-1 мин-1 - 100 % x 2.0 x 10-7 / 3.2 x 10-6 или 6.3 % чистоты. 1.0 µг такого образца на самом деле содержит лишь 0.063 µг химотрипсина и 0.937 µг примесей.

 

Рис2-4. Молярное поглощение НАД+,НАДН+Н+, ФАД, ФАДН2 при разных длинах волн поглощаемого света

Методы исследования активности определяются механизмом реакции и природой определяемого вещества. Наиболее широко используются:

· Измерение изменения спектральных свойств (измерение поглощения света в видимой или ультрафиолетовой области, измерение флюоресценции) при помощи спектрофотометров, ФЭКов, спектрофлуориметров. Эти методы применяют и для определения количества продуктов или субстратов реакции, и для изменений количества коферментов, участвующих в реакции. Последнее нашло широкое применение в практике клинических биохимических лабораторий. В основе этих методов лежит закон Beer-Lambert: A = e x c x l = log (I0/I) (e, поглощение 1 M раствора вещества при специфической длине волны или молярный коэффициент экстинкции; c, концентрация; A, поглощение; l, длина в см кюветы спектрофотометра; I0, интенсивность падающего света; I, интенсивность прошедшего света). В случае, если молярный коэффициент экстинкции ( исследуемого вещества неизвестен, исследователь определяет экспериментально зависимость между поглощением света исследуемого раствора и концентрацией этого вещества и использует полученную закономерность в форме стандартного (калибровочного) графика.

На рисунке 2-4 показаны спектральные характеристики коферментов НАД и ФАД в окисленной и восстановленной форме. Измерение поглощения при 340 нм используется для количественной оценки активности ферментов, катализирующих окислительно-восстановительные реакции c участием НАД. Вот пример такого расчета для реакции, катализируемой лактатдегидрогеназой В этой реакции молочная кислота окисляется, передавая водороды на НАД+. При этом НАД+ восстанавливается до НАДН +Н+., который в отличие от НАД+ поглощает свет с длиной волны 340 нм. Допустим, за время проведения реакции поглощение при длине волны 340 нм изменялось на 0.31 единицы в минуту. Измерения проводили в кювете шириной 1 см. Коэффициент молярной экстинкции для НАДН при 340 нм e = 6200 л моль-1 см-1.

 

Увеличение [НАДH] = Увеличение поглощения e. l 0.31 =5.0 х10-5 моль/л

Эту величину можно использовать для оценки скорости реакции.

· Измерение изменений концентрации высвобождаемых или поглощаемых во время реакции H+ или ОН- при помощи pH-стата (устройство, которое автоматически добавляет кислоту или основание, сохраняя постоянство pH в реагирующей смеси)

· Химический анализ с использованием высокоразрешающей жидкостной или газовой хроматографии, или ЯМР или тонкослойной хроматографии. (АТФазы)

· Изотопный анализ (например, с использованием радиоактивного 32P)

 



Поделиться:


Последнее изменение этой страницы: 2016-08-16; просмотров: 2423; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.63.174 (0.199 с.)