Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Прогнозирование на основе уравнения регрессии

Поиск

 

Точечный прогноз получают путем подстановки в уравнение регрессии значений факторных признаков. Если полученная модель регрессии экономически объективна и обладает требуемой точностью, то прогнозируемые значения обладают достаточной надежностью. По своему характеру они являются средними значениями, которые следует ожидать с большой вероятностью. Значения отдельных данных наблюдений рассеиваются вокруг средних значений, поэтому фактические значения результативного признака не будут совпадать с расчетными (прогнозами). Рассеяние наблюдений вокруг линии регрессии определяет надежность получаемых по уравнению регрессии прогнозируемых оценок. Для каждого прогнозируемого точечного значения результативного признака необходимо определять доверительный интервал (интервальный прогноз)

(25)

где критическое значение статистики.

 

Экономический смысл параметров модели регрессии

 

Значение регрессии соответствует среднему значению результативного признака при заданном значении факторного признака в предположении, что единственной причиной изменения результативного признака является этот факторный признак и отклонение

Многомерный регрессионный анализ позволяет разграничить влияние факторных признаков. Параметр регрессии при каждом факторном признаке дает оценку его влияния на величину результативного признака в случае изменения на единицу при постоянстве всех остальных факторов.

 

1.8. Прогнозирование на основе методов оптимизации

 

Уравнение многомерной регрессии можно считать целевой функцией и использовать его при расчете прогнозов на основе методов оптимизации.

Постановка задачи. Определить такие значения факторных признаков, которые обеспечивают увеличение (уменьшение) на 10-15 % максимального (минимального) значения результативного признака.

Математическая модель задачи

· Целевая функция

где заданное значение результативного признака.

· Ограничения:

где максимальные значения факторных признаков в исследуемой выборке.

· Граничные условия:

Так как целевая функция нелинейная, то имеем задачу нелинейного программирования. Для ее решения используется надстройка «Поиск решения».

ПРИМЕР ВЫПОЛНЕНИЯ ЗАДАНИЯ

 

Выполнить корреляционно-регрессионный анализ следующих показателей производственно-хозяйственной деятельности предприятий машиностроения:

· - рентабельность;

· - удельный вес рабочих в составе промышленно-производственного персонала;

· - премии и вознаграждения на одного работника, %;

· - непроизводственные затраты, %.

Определить прогнозируемые значения рентабельности на основе уравнений регрессии и методов оптимизации.

Размещение информации для проведения корреляционно-регрессионного анализа представлено в таблице 7.

 

 

Т а б л и ц а 7

Размещение информации на рабочем листе ЭТ

 

Контроль исходной информации на наличие

Грубых ошибок и выбросов

 

Грубых ошибок в исходной информации многомерной выборки объемом нет, но среди элементов массива признака имеется два элемента, значения которых резко выделяются на общем фоне: 0,03 и 4,44. Проверим, не являются ли эти значения выбросами. Результаты расчета представлены в таблице 8.

 

Т а б л и ц а 8

Контроль информации на наличие выбросов

 

 

Продолжение таблицы 8

В среде ЭТ с помощью мастера функций определяем для массива выборочное среднее, стандартное отклонение и по формуле (1) считаем расчетное значение - критерия.

В отдельную ячейку заносим критическое значение этого критерия.

Следовательно, первое экстремальное значение не является выбросом, т.е. в таком размере премии и вознаграждения на одного работника для рассматриваемой совокупности предприятий возможны. По расчетам второе экстремальное значение является выбросом. Поскольку речь идет о премиях и вознаграждениях, то возможно в современных условиях хозяйствования найдется предприятие, которое обеспечит своему персоналу получение хороших премий. Но для расчета второе экстремальное значение необходимо удалить.

 



Поделиться:


Последнее изменение этой страницы: 2016-08-15; просмотров: 431; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.239.145 (0.01 с.)