Поверхностное упрочнение стали


Поверхностная закалкасостоит в нагреве поверхностного слоя стальных деталей до аустенитного состояния и быстрого охлажде­ния с целью получения высокой твердости и прочности в поверхно­стном слое в сочетании с вязкой сердцевиной. Существуют различ­ные способы нагрева поверхности под закалку — в расплавленных металлах или солях, пламенем газовой горелки, лазерным излучени­ем, током высокой частоты. Последний способ получил наибольшее распространение в промышленности.

При нагреве токами высокой частоты закаливаемую деталь по­мещают внутри индуктора, представляющего собой медные трубки с


Пейсахов A.M. МАТЕРИАЛОВЕДЕНИЕ

циркулирующей внутри для охлаждения водой. Форма индуктора соответствует внешней форме детали. Через индуктор пропускают электрический ток (частотой 500 Гц-10 МГц). При этом возникает электромагнитное поле, которое индуцирует вихревые токи, нагрева­ющие поверхность детали. Глубина нагретого слоя уменьшается с уве­личением частоты тока и увеличивается с возрастанием продолжи­тельности нагрева. Регулируя частоту и продолжительность, можно получить необходимую глубину закаленного слоя, находящуюся в пределах 1-10 мм.

Преимуществами закалки токами высокой частоты являются регулируемая глубина закаленного слоя, высокая производительность (нагрев одной детали длится 10 с), возможность автоматизации, от­сутствие окалинообразования. Недостаток — высокая стоимость индуктора, который является индивидуальным для каждой детали. Поэтому этот вид закалки применим, в основном, к крупносерийно­му и массовому производству.

Перспективный метод поверхностной закалки стальных деталей сложной формы — лазерная обработка. Благодаря высокой плотно­сти энергии в луче лазера возможен быстрый нагрев очень тонкого слоя металла. Последующий быстрый отвод тепла в объем металла приводит к закалке поверхностного слоя с приданием ему высокой твердости и износостойкости.

Химико-термическая обработка— это процесс изменения хи­мического состава, структуры и свойств поверхности стальных дета­лей за счет насыщения ее различными химическими элементами. При этом достигается значительное повышение твердости и износо­стойкости поверхности деталей при сохранении вязкой сердцевины. К видам химико-термической обработки относятся цементация, азо­тирование, цианирование и др.

Цементация — это процесс насыщения поверхностного слоя стальных деталей углеродом. Цементация производится путем нагре­ва стальных деталей при 880-950°С в углеродосодержащей среде, называемой карбюризатором. Различают два основных вида цемен­тации — газовую и твердую. Газовая цементация проводится в газе, содержащем метан СН4 и оксид углерода СО. Твердая цементация проводится в стальных ящиках, куда укладываются детали впере­мешку с карбюризатором. Карбюризатором служит порошок дре­весного угля с добавкой солей Na2CO3 или ВаСО3.

Цементации подвергают стали с низким содержанием углеро­да (0,1-0,3%). В результате на поверхности концентрация углерода


4. ТЕРМИЧЕСКАЯ И ХИМИКО-ТЕРМИЧЕСКАЯ ОБРАБОТКА СТАЛИ 39

возрастает до 1,0-1,2%. Толщина цементованного слоя составляет 1-2,5 мм.

Цементацией достигается только выгодное распределение угле­рода по сечению детали. Высокая твердость и износостойкость по­верхности получается после закалки, которая обязательно прово­дится после цементации. Затем следует низкий отпуск. После этого твердость поверхности составляет HRC 60.

Азотированием называется процесс насыщения поверхности ста­ли азотом. При этом повышаются не только твердость и износостой­кость, но и коррозионная стойкость. Проводится азотирование при температуре 500-600°С в среде аммиака NH3 в течение длительного времени (до 60 ч.) Аммиак при высокой температуре разлагается с образованием активного атомарного азота, который и взаимодей­ствует с металлом. Твердость стали повышается за счет образования нитридов легирующих элементов. Поэтому азотированию подверга­ют только легированные стали. Наиболее сильно повышают твер­дость такие легирующие элементы, как хром, молибден, алюминий, ванадий. Глубина азотированного слоя составляет 0,3 — 0,6 мм, твер­дость поверхностного слоя по Виккерсу доходит до HV 1200 (при цементации HV 900).

К преимуществам азотирования перед цементацией следует отне­сти отсутствие необходимости в дополнительной термообработке, более высокую твердость и износостойкость, высокую коррозионную стой­кость поверхности. Недостатками являются низкая скорость процесса и необходимость применения дорогих легированных сталей.

Цианирование (нитроцементация) — это процесс одновременно­го насыщения поверхности стали углеродом и азотом. Проводится цианирование в расплавах цианистых солей NaCN или KCN или в газовой среде, содержащей смесь метана СН4 и аммиака NHr Разли­чают низкотемпературное и высокотемпературное цианирование.

Низкотемпературное цианирование проводится при температуре 500-600°С. При этом преобладает насыщение азотом. Глубина цианирован-ного слоя составляет 0,2-0,5 мм, твердость поверхности — HV 1000.

При высокотемпературном цианировании температура состав­ляет 800-950°С. Преобладает насыщение углеродом. Глубина повер­хностного слоя составляет 0,6 — 2,0 мм. После высокотемператур­ного цианирования следует закалка с низким отпуском. Твердость после термообработки составляет HRC60.

Поверхностное упрочнение пластическим деформированиемос­новано на способности стали к наклепу при пластической деформации



Пейсахов A.M. МАТЕРИАЛОВЕДЕНИЕ


5. ЛЕГИРОВАННЫЕ СТАЛИ



 


(см. раздел 2.1). Наиболее распространенными способами такого упрочнения поверхности является дробеструйная обработка и обра­ботка поверхности роликами или шариками.

При дробеструйной обработке на поверхность детали из специ­альных дробеметов направляется поток стальной или чугунной дро­би малого диаметра (0,5-1,5 мм). Удары концентрируются на весьма малых поверхностях, поэтому возникают очень большие местные давления. В результате повышается твердость и износостойкость обработанной поверхности. Кроме того, сглаживаются мелкие по­верхностные дефекты. Глубина упрочненного слоя при дробеструй­ной обработке составляет около 0,7 мм.

Обкатка роликами производится с помощью специальных при­способлений на токарных станках. Помимо упрочнения, обкатка снижает шероховатость обрабатываемой поверхности. Глубина уп­рочненного слоя доходит до 15 мм.


ЛЕГИРОВАННЫЕ СТАЛИ

Легированной называют сталь, содержащую специально введенные в нее с целью изменения строения и свойств легирующие элементы.

Легированные стали имеют целый ряд преимуществ перед углеро­дистыми. Они имеют более высокие механические свойства, прежде всего, прочность. Легированные стали обеспечивают большую прока-ливаемость, а также возможность получения структуры мартенсита при закалке в масле, что уменьшает опасность появления трещин и короб­ления деталей. С помощью легирования можно придать стали различ­ные специальные свойства (коррозионную стойкость, жаростойкость, жаропрочность, износостойкость, магнитные и электрические свойства).

Классификация сталей по различным признакам была рассмот­рена ранее (см. раздел 3.2) . Отметим только, что стали обыкновен­ного качества могут быть только углеродистыми, т.е. легированные стали, как минимум, являются качественными.

Маркируются легированные стали с помощью цифр и букв, ука­зывающих примерный химический состав стали. Первые цифры в марке показывают среднее содержание углерода в сотых долях про­цента. Далее показывается содержание легирующих элементов. Каж­дый элемент обозначается своей буквой: Н — никель, Г — марга­нец, Ц — цирконий, Т — титан, X — хром, Д — медь, С — кремний, А — азот, К — кобальт, Р — бор, П — фосфор, Ф — ванадий, М — молибден, Б — ниобий, В — вольфрам, Ю — алюминий. Цифры, идущие после буквы, указывают примерное содержание данного ле­гирующего элемента в процентах. При содержании элемента менее 1% цифра отсутствует. Например, сталь 12Х18Н10Т содержит при­близительно 0,12% углерода, 18% хрома, 10% никеля, менее 1% титана. Для некоторых групп сталей применяют другую маркировку, которая будет указана при рассмотрении этих сталей.

Конструкционные стали

Конструкционные стали идут на изготовление деталей машин, конструкций и сооружений. Они должны обеспечивать длительную и надежную работу деталей и конструкций в условиях эксплуатации.



Пейсахов A.M. МАТЕРИАЛОВЕДЕНИЕ


5. ЛЕГИРОВАННЫЕ СТАЛИ



 


Поэтому основное требование к конструкционным сталям — комп­лекс высоких механических свойств.

Строительные сталисодержат малые количества углерода (0,1-0,3%)- Это объясняется тем, что детали строительных конструкций обычно соединяются сваркой. Низкое содержание углерода обеспе­чивает хорошую свариваемость.

В качестве строительных используются углеродистые стали Ст2 и СтЗ, имеющие предел текучести б0,= 240 МПа. В низколегирован­ных строительных сталях при содержании около 1,5% Мп и 0,7% Si предел текучести увеличивается до 360 МПа. К этим сталям относят­ся 14Г2, 17ГС, 14ХГС. Дополнительное легирование небольшими коли­чествами ванадия и ниобия (до 0,1%) повышает предел текучести до 450 МПа за счет уменьшения величины зерна. К сталям такого типа относятся 14Г2АФ, 17Г2АФБ.

Приведенные стали применяют для строительных конструкций, армирования железобетона, магистральных нефтепроводов и газо­проводов.

Цементуемые сталисодержат 0,1-0,3% углерода. Они подверга­ются цементации, закалке и низкому отпуску. После этой обработки твердость поверхности составляет HRC 60, а сердцевины HRC 15 — 40. Упрочнение сердцевины в этих сталях тем сильнее, чем больше содержание легирующих элементов. В зависимости от степени уп­рочнения сердцевины цементуемые стали можно разделить на три группы.

К сталям с неупрочняемой сердцевиной относятся углеродистые цементуемые стали 10, 15, 20. Их сердцевина имеет феррито-пер-литную структуру. Эти стати имеют высокую износостойкость, но малую прочность (бв = 400-500 МПа). Поэтому они применяются для малоответственных деталей небольших размеров.

К сталям со слабо упрочняемой сердцевиной относятся низколеги­рованные стали 15Х, 15ХР, 20ХН и др. Сердцевина имеет структуру бейнит. Эти стали имеют повышенную прочность (бв= 750-850 МПа).

К сталям с сильно упрочняемой сердцевиной относятся стали 20ХГР, 18ХГТ, 30ХГТ, 12ХНЗ, 18Х2Н4В и др. Серцевина имеет мартенситную структуру. Стали этой группы имеют высокую проч­ность (б„ = 1200-1600 МПа) и применяются для крупных деталей, испытывающих значительные нагрузки.

Улучшаемые стали содержат 0,3-0,5% углерода и небольшое количество легирующих элементов (до 3-5%). Эти стали подверга­ются улучшению, состоящему из закалки в масле и высокого отпуска.


После термообработки имеют структуру сорбита. Механические свой­ства разных марок улучшаемой стали в случае сквозной прокалива-емости близки (бя= 900-1200 МПа). Поэтому прокаливаемость оп­ределяет выбор стали. Чем больше легирующих элементов, тем выше прокаливаемость. Следовательно, чем больше сечение детали, тем более легированную сталь следует использовать. По прокаливаемос -ти улучшаемые стали могут быть условно разбиты на пять групп.

В первую группу входят углеродистые стали 35, 40, 45, имеющие критический диаметр Dk = 10 мм (см. раздел 4.2.). Эти стали под­вергаются нормализации вместо улучшения.

Ко второй группе относятся стали, легированные хромом 30Х, 40Х. Для них критический диаметр составляет Dk = 15-20 мм.

Третью группу составляют хромистые стали, дополнительно ле­гированные еще одним двумя элементами (кроме никеля) 30ХМ, 40ХГ, 30ХГС и др. Для этих сталей Dk = 20-30 мм.

Четвертая группа представлена хромоникелевыми сталями, со­держащими около 1% никеля: 40ХН, 40ХНМ и др. Их критический диаметр D = 40 мм.

В пятую группу входят стали, легированные рядом элементов, причем содержание никеля доходит до 3-4%: 38ХНЗ, 38ХНЗМФ (Dk = 100 мм). Это лучшие марки улучшаемых сталей, хотя они сравнительно дороги.

Высокопрочные стали.Новейшая техника предъявляет высо­кие требования к прочности стали (бв= 1500-2500 МПа). Этим тре­бованиям соответствуют мартенситностареющие стали сочетаю­щие высокую прочность с достаточной вязкостью и пластичностью. Они представляют собой практически безуглеродистые (до 0,03% С) сплавы железа с никелем (17-26% Ni), дополнительно легированные титаном, алюминием, молибденом, ниобием и кобальтом. Широкое распространение получила сталь Н18К9М5Т. Она подвергается за­калке на воздухе с 800-850°С. Высокую прочность мартенситноста­реющие стали получают в результате старения, представляющего собой отпуск, производимый при температуре 450-500°С. В резуль­тате такой термообработки сталь Н18К9М5Т имеет предел прочно­сти б= 2000 МПа.

Кроме упомянутой выше стали нашли применение стали Н12К8МЗГ2, Ml0X11М2Т, Н12К8М4Г2 и другие. Мартенситностаре­ющие стали применяют в авиационной промышленности, в ракетной технике, судостроении и т. д. Они обладают хорошей свариваемостью и обрабатываемостью. Эти стали являются достаточно дорогостоящими.



Пейсахов A.M. МАТЕРИАЛОВЕДЕНИЕ


5. ЛЕГИРОВАННЫЕ СТАЛИ



 


Пружинные стали.В пружинах и рессорах используются толь­ко упругие свойства стали. Возникновение пластической деформа­ции в них недопустимо, поэтому высоких требований к пластичнос­ти и вязкости не предъявляется. Основное требование к пружинной стали — высокий предел упругости о(см. раздел 1.2). Хорошие упругие свойства стали достигаются при повышенном содержании углерода (0,5-0,7%) и применении термообработки, состоящей из закалки и среднего отпуска при температуре 35О-450°С. После та­кой термообработки сталь имеет троститную структуру.

Углеродистые пружинные стали (65, 70, 75) вследствие низкой прокаливаемое™ используются для пружин небольшого сечения. Они могут работать при температуре до 100° С. Стали, легированные кремнием и марганцем (60С2, 60СГ и др.) предназначены для боль­ших по размеру упругих элементов и обеспечивают их длительную и надежную работу. Для ответственных пружин применяют высокока­чественные стали легированные хромом и ванадием (50ХФА, 50ХГФА). Эти стали могут работать при температуре до 300е С. Из них изготавливают, например, рессоры легковых автомобилей.

Износостойкие статиспособны сопротивляться процессу изна­шивания. Изнашивание — это процесс постепенного разрушения поверхностных слоев трущихся деталей, который приводит к умень­шению их размеров (износу). Износостойкие стали можно разделить на три группы.

В первую группу входят стали, износостойкость которых дости­гается высокой твердостью поверхности. Они подвергаются закалке и низкому отпуску или химико-термической обработке. Имеют струк­туру мартенсита или мартенсита с карбидными включениями. К этой группе относятся подшипниковые стали, из которых изготавливают­ся шарики и ролики подшипников качения. Они маркируются бук­вами ШХ и цифрой показывающей содержание хрома в десятых долях процента, содержат также марганец и кремний (ШХ4, ШХ15, ШХ15СГ, ШХ20СГ). Содержание углерода в них около 1%.

Ко второй группе относятся стали, износостойкость которых достигается смазывающим действием графита. Эти стали имеют в структуре графитные включения, которые в процессе изнашивания выходят на поверхность и выполняют роль сухой смазки. Эти стали имеют высокое содержание углерода (-1,5%) и кремния (-1%), что повышает способность к графитизации. Эти стали подвергаются гра-фитизирующему отжигу, который аналогичен отжигу ковкого чу1уна (см. раздел 3.3.).


Третью группу составляют стали износостойкость которых дос­тигается повышенной склонностью к наклепу. Это, прежде всего, сталь 110Г13. Она имеет невысокую твердость, которая при дей­ствии давления и ударов резко повышается, за счет чего и достигает­ся износостойкость. Эта сталь подвергается закалке от 1100°С в воде, после чего получает аустенитную структуру. Плохо обрабаты­вается резанием, поэтому применяется в литом состоянии.









Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы

infopedia.su не принадлежат авторские права, размещенных материалов. Все права принадлежать их авторам. Обратная связь