Проблема происхождения массы, известная как проблема полей хиггса 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Проблема происхождения массы, известная как проблема полей хиггса



В 1964 году шотландский физик Питер Хиггс и другие, исходя из чисто математических соображений, допустили существование вездесущего поля, позже названного полем Хиггса. Все взаимодействующие с полем Хиггса частицы приобретают вследствие этого массу. Иначе говоря, всякая масса порождена взаимодействием.

Механизм обретения массы схож с прохождением строя солдат через разлитую на земле патоку. Они становятся тяжелее вследствие прилипания патоки при ходьбе. Другим примером может служить вечеринка, где гости разбрелись по комнате. При появлении важного лица ближайшие соседи обступают его, увеличивая тем самым его эффективную [т. е. большую, чем реальная] массу. Чем значительнее лицо, тем больше народу обступает его, а значит, растет и его масса.

Согласно данной теории частицы по-разному сцепляются с полем Хиггса, что приводит к большим массам у W- и Z-бозонов и к отсутствию массы у фотона и глюона. Если механизм Хиггса действительно ответственен за массу у элементарных частиц, он хотя бы отчасти дает ответ на вопрос, откуда появляется масса.

Но как определить, действительно ли существует поле Хиггса или это просто математический прием? Надо поступить следующим образом. Достаточно крепкий удар вроде удара частиц с очень высокой энергией по космической патоке, именуемой полем Хиггса, вызовет дрожание этой патоки. Колебания же самого поля можно зарегистрировать, поскольку должна появиться частица Хиггса, переносчик хиггсова поля, подобно тому как фотон служит переносчиком электромагнитного поля.

В самой простой теории лишь одна частица Хиггса является носителем хиггсова взаимодействия. Более сложные теории содержат многочисленные частицы Хиггса, в числе которых самая легкая. И, возможно, эта частица доступна современным ускорителям.

В течение нескольких лет Европейская организация по ядерным исследованиям в Женеве — ЦЕРН (Швейцария) занималась поисками хиггсовой частицы на ускорителе со встречными электрон-позитронными пучками (LEP). При 115 ГэВ (см. табл. 2 для масс частиц) было зарегистрировано интересующее явление [т. е. хиггсова частица], но для подтверждения необходимы также дополнительные данные, чтобы исключить влияние фона. В 2001 году ЦЕРН закрыл ускоритель для создания более мощного устройства с тем же тоннелем [27-километровым накопительным кольцом]. Новый ускоритель — Большой ускоритель со встречными протон-протонными пучками (LHC) по плану вступит в строй в 2005 году и благодаря своей мощи (8000 ГэВ в пучке) станет более эффективным средством исследования. С марта 2001 года Национальная лаборатория высокоэнергетических исследований имени Энрико Ферми (FNAL) в Батавии (штат Иллинойс) ведет поиски частицы Хиггса на своем ускорителе Tevatron (1000 ГэВ в пучке), но события, связанные с существованием такой частицы, были столь нечасты, что, похоже, уйдет много времени для сбора статистически значимых данных. [Сеанс набора данных продлится пять лет.] Сверхпроводящий сверхускоритель на встречных пучках (SSC), проект которого одобрен президентом Бушем в 1987 году, своей главной целью ставил поиск частицы Хиггса, и обладал бы достаточной мощью (20 000 ГэВ в пучке) для решения подобной задачи, но его строительство было прекращено по решению сената США в 1993 году [несмотря на уже израсходованные 2 млн долларов].

В случае если найдется частица Хиггса и ее масса окажется в пределах досягаемости нынешних ускорителей, можно расширить стандартную модель, чтобы она включила вытекающие из этого следствия. Данный шаг, конечно же, не решит вопроса о происхождении массы или всех трудностей стандартной модели, но послужит все же неким началом.

 

Если частица Хиггса отыщется и ее масса выйдет за предсказанные пределы, стандартная модель рухнет, поскольку ее прогнозы прежде были безупречными. В таком случае потребуется существенный пересмотр или даже замена стандартной модели.

Если будет найдено множество частиц Хиггса, помимо стандартной модели потребуются новые теории.

Если не отыщется ни одной частицы Хиггса, это тоже повлечет за собой необходимость замены стандартной модели. Подобные теории обсуждаются в следующем разделе.

Итак, обнаружение частицы Хиггса или хотя бы установление нижней границы ее массы оказывается ключевым для понимания причины разнобоя в определении массы частиц. Однако некоторые ученые полагают, что поля Хиггса — лишь временная мера, не решающая вопроса о происхождении массы. Частица Хиггса для них — своего рода долгий ящик неведения, куда откладываются основополагающие трудности стандартной модели.

Стандартная модель недоучитывает тяготения — и это другая сторона нерешенного вопроса с массой. Прямым ответом здесь послужило бы создание квантовой теории тяготения (гравитации). Лучшей теорией тяготения считается общая теория относительности Эйнштейна, и почему бы в таком случае просто не приложить квантовые законы к общей теории относительности? Потому что сделать это нелегко. Обобщенная теория относительности является классической в отношении связи геометрии Вселенной как гладкого на больших масштабах четырехмерного многообразия с массой. Она хорошо работает при больших расстояниях, но на расстояниях между частицами меньше 1 мм никаких опытов не проводилось. Это означает, что сила тяготения попросту экстраполируется в микромир. Вместе с тем стандартная модель проводит квантование полей в виде дискретных частиц и имеет дело с крайне малыми масштабами. Поэтому, когда ученые пытаются провести квантование для общей теории относительности, теория дает бесконечные значения для явно конечных величин.

Другая трудность вызвана крайней слабостью тяготения по сравнению с другими силами. Чтобы быть на равных с сильным и электрослабым взаимодействием, тяготение должно иметь сравнимую силу. Это так называемая проблема иерархии взаимодействий. Огромный энергетический разрыв существует между энергиями, для которых применима стандартная модель, и энергией, при которой наиболее слабо выраженное тяготение становится сравнимым по величине с сильным и электрослабым взаимодействиями. Неизвестно, чем вызван такой огромный разрыв.

 

Нужна новая физика

Как видим, опытное подтверждение существует лишь для стандартной модели. Однако своей проверки ждут многие теории. Вот некоторые из них.

Теории великого объединения (ТВО) и теории всего сушего (ТВС). Названия лишь вводят в заблуждение, поскольку предлагают больше, чем могут дать. В действительности они лишь указывают на объединение известных взаимодействий в рамках одной, всеобъемлющей теории. ТВО объединяют электрослабое и сильное взаимодействие. Более амбициозные ТВО «замахиваются» не только на сильное и электрослабое взаимодействия, но и на гравитационное. Даже если такая теория будет создана, это вряд ли ознаменует конец науки, которая полна иных, требующих ответа вопросов.

М-теория. Физик из Принстона Эдуард Виттен говорит, что «М означает "магический" или "мембрана", как кому нравится». Некоторые прежние теории оказываются частным случаем этой общей теории — так называемые теории струн, суперструн и бран. Вместо того чтобы рассматривать кварки и лептоны в виде точечных (одномерных) частиц, данная теория предлагает считать их двухмерными (струнами) или даже многомерными (мембранами, сокращенно бранами). Эти родственные теории объединяют все силы, включая тяготение, и не содержат никаких бесконечностей, требующих перенормировки, как в случае со стандартной моделью. Но раз они требуют числа размерностей больше четырех (сейчас в ходу 10, 11 и 26 размерностей), дополнительные размерности могут представать полностью свернутыми или по своей малости недоступными современным измерительным приборам либо огромными, чуть ли не бесконечными. Согласно одной из таких теорий все размерности Вселенной вначале были одинаковой величины, но затем разделились и изменяли свою величину по мере расширения и охлаждения Вселенной. Трудность в выборе какой-либо теории данного рода обусловлена тем, что наш опыт или интуиция неприменимы к размерностям, выходящим за рамки четырехмерного мира, в котором мы живем.

Суперсимметрия (СУСИ). В случае замены фермионов на бозоны и наоборот описывающие основные взаимодействия уравнения должны оставаться истинными. Данная теория предсказывает существование гораздо более тяжелых суперпартнеров для всех частиц. Если такие суперпартнеры существуют, у одного или нескольких из них масса может оказаться довольно малой для обнаружения при поисках бозона Хиггса. Суперсимметричные партнеры могли бы также объяснить существование темной материи (см. гл. 6). (Суперпартнеров обозначают прибавлением приставки «с» к названиям фермионов, т. е. суперпартнер электрона именовался бы сэлектроном, протона — спротоном и т. д. Суффикс «ино» присоединяется к названиям суперпартнеров у бозонов, т. е. суперпартнер фотона именовался бы фотино, W- - бозона — вино и т. д.)

Техницвет. Данная теория [сильного взаимодействия] рассматривает кварки и лептоны состоящими из более мелких частиц. Поскольку она предсказывает существование новых частиц, допускается опытная проверка.

Твисторов теория. Посредством [трехмерного] комплексного представления [вещественного] четырехмерного пространства — времени [Минковского] переформулируются положения стандартной модели и общей теории относительности. (Комплексное число задается выражением

а + ib, где i — квадратный корень из — 1, а а и b — действительные числа. [Твисторы же — прямые во вспомогательном комплексном трехмерном проективном пространстве, соответствующие точкам четырехмерного вещественного пространства—времени Минковского. Понятие твистора введено Роджером Пенроузом в конце 1960-х годов.]) Значение комплексных чисел в реальном мире неясно: их нельзя использовать для счета или измерения любых реальных величин.

Чтобы не оказаться на свалке отвергнутых теорий, любая научная гипотеза должна делать предсказания, подкрепляемые опытными данными. Одни новые теории слишком умозрительны для получения предсказаний, доступных проверке; другие очень сложны для расчетов; третьи включают величины, слишком далекие от нашей повседневной действительности, чтобы можно было накладывать на них ограничения на основе наших опыта и интуиции. Для получения экспериментального подтверждения существования некоторых предсказанных очень тяжелых частиц требуется ускоритель величиной с Солнечную систему.

Принцип соответствия Нильса Бора, выдвинутый в 1920-е годы, гласит, что квантовая механика должна согласовываться с классической физикой в случаях, когда классическая теория доказала свою истинность. Если следовать этому правилу в данном случае, всякая новая теория должна сводиться к стандартной модели в условиях, когда опытные данные подтвердили ее верность. Нужно время, чтобы появилась такая теория.

Необходим новый язык?

Умозрительность положений стандартной модели и возможных ее преемниц не должна вводить в заблуждение. Язык, на котором описывается стандартная модель, является математическим, а такой язык сам может оказаться неполным. Не исключено, что потребуются новые математические понятия. Для объяснения движения Ньютон создал дифференциальное исчисление, имеющее дело с плавно изменяющимися функциями и малыми числами. Нам известно, что Вселенной присущи разрывные функции и большие числа, однако многие уравнения по-прежнему выражаются понятиями дифференциального исчисления. (В гл. 5, о прогнозе погоды, мы столкнемся с теми же трудностями.) Многие теории, ставящие целью смену стандартной модели, включают математические понятия на более глубоком по сравнению с дифференциальным исчислением уровне, привлекая такие понятия, как группы, кольца, идеалы и топологические структуры. Составление описывающих поведение Вселенной уравнений — не то же, что решение этих уравнений в физически точных и осмысленных выражениях.



Поделиться:


Последнее изменение этой страницы: 2017-02-10; просмотров: 286; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.81.222.152 (0.032 с.)