Средняя длина свободного пробега частиц в газе 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Средняя длина свободного пробега частиц в газе



Столкновения молекул друг с другом, происходящие при их хаотическом движении, сопровождаются непрерывным изменением величины и направления скорости молекул. Траектория каждой молекулы – это ломаная линия, длина прямолинейных отрезков которой из-за случайности столкновений различна. Рассчитывается средняя длина этих отрезков – средняя длина свободного пробега молекул :

где – число столкновений молекулы с другими молекулами в течение 1 с.

За 1 секунду молекула проходит путь и сталкивается с теми молекулами, центры которых расположены от центра движущейся молекулы на расстоянии, равном ее диаметру :

Видно, что средняя длина свободного пробега молекул обратно пропорциональна их концентрации и давлению.

Состояние газовой среды характеризуется величиной (полное эффективное сечение для столкновений молекул). Она показывает, сколько столкновений претерпевает молекула на единице пути:

Важным в кинетической теории газов является уравнение, позволяющее определить, какое число молекул из общего числа молекул , совершая движение в газе, пройдет без столкновений путь :

Движение электрона в газообразной среде также характеризуется средней длиной свободного пробега и эффективным сечением . Электрон по сравнению с молекулой можно считать частицей бесконечно малых размеров, при этом электрон движется значительно быстрее молекул. Из кинетической теории газов следует, что

Однако эти соотношения дают приближенную оценку величины и .

Остановимся на понятии вакуум.

 

Вакуум

 

Вакуум – состояние газа, имеющего плотность, меньшую его плотности при нормальных физических условиях. Характеристикой вакуума является отношение (средней дины свободного пробега) к расстоянию между электродами , где движутся молекулы и ускоряются или тормозятся заряженные частицы.

Различают низкий, средний и высокий вакуум. Низкий вакуум – разряженность газа, при которой , средний вакуум – , высокий вакуум – .

Примерная разбивка по давлениям:

110¸1 [Па] – низкий вакуум;

1¸10-2 [Па] – средний вакуум;

10-2¸10-5 [Па] – высокий вакуум;

10-5¸10-7 [Па] – сверхвысокий вакуум.

Вакуум обеспечивается методом откачки объема при помощи насосов. Существует большое количество типов насосов, обеспечивающих вакуум той или иной степени. Степень вакуума измеряется при помощи приборов – манометров, которые тоже образуют отдельный большой класс.

 

Твердое тело

Твердыми называются тела, которые имеют постоянную форму и объем.

Поскольку в электронике применяются только кристаллы и жидкие кристаллы, остановимся только на них.

Кристаллизация. В этом случае в жидкости, охлажденной до определенной температуры, появляются области с упорядоченным расположением прочно связанных между собой частиц (кристаллы), которые при дальнейшем охлаждении вещества разрастаются путем присоединения к ним частиц из жидкой фазы и охватывают в конце весь объем вещества.

При кристаллизации возникновение специфических свойств вещества как твердого тела обусловлено увеличением сил связи между молекулами или атомами не в результате уменьшения расстояния между ними, а вследствие упорядоченного их расположения.

Упорядоченное расположение молекул и атомов в твердом теле приводит к образованию некоторой правильной структуры, которая имеет название «кристаллическая решетка» и представляет собой «объемную сетку», в узлах которой располагаются частицы (атомы, ионы или молекулы). В основе любой кристаллической решетки лежит элементарная кристаллическая ячейка с характерным для данной решетки расположением атомов.

Доказательством наличия у твердого тела кристаллической решетки являются результаты рентгенографии и электронографии. Только эти методы могут позволить обнаружить кристаллическую решетку. Это обстоятельство объясняется тем, что длина волны (де Бройля в случае ) сравнима с периодом кристаллической решетки 5¸20 Å и дифрагирует на решетке. Период кристаллической решетки является вторым ее параметром.

Характерной особенностью кристалла является анизотропия его свойств, т.е. зависимость его свойств от свойств макроскопического тела, от направления, связанного с некоторой системой координат.

Другие физические свойства обладают также анизотропией (тепловые, оптические, электрические), что подтверждает практика. К электрическим свойствам можно отнести электронную эмиссию, которая зависит от работы выхода, а последняя, в свою очередь, зависит от расположения и ориентации эмиттирующей плоскости кристалла.

 

Жидкие кристаллы

В конце ХIX века были открыты вещества, свойства внутренней структуры которых в жидком состоянии имели черты, характерные как для жидкости, так и для твердого тела. Такое состояние вещества называют мезоморфным, что означает состояние с промежуточной структурой, а вещества – жидкими кристаллами. Вещество в жидком состоянии обладает текучестью и принимает форму сосуда, в котором находится. Ориентация молекул в жидкости, даже если она имеет место, имеет ближний порядок в диапазоне нескольких молекулярных слоев. В твердом кристалле, наоборот, молекулы строго ориентированы во всем объеме и имеют дальний порядок.

Жидкие кристаллы – это вещества, имеющие при данных температурных условиях характер жидкости и твердого тела. Встречаются они часто. Из 200 вновь синтезированных веществ – одно жидкокристаллическое.

Классификация жидких кристаллов. Различают три типа жидких кристаллов: смектические, нематические, холестерические.

 
 

Смектические впервые наблюдали в мылах (рис. 2.2).

 

 

В таких кристаллах вытянутые молекулы в форме сигар или веретен расположены параллельно своим длинным осям и образуют слои одинаковой толщины, близкой к длине молекул. Эти слои лежат один на другом. Молекулярные слои подвижны, легко перемещаются параллельно друг друга. Температура фазового перехода в мезоморфное состояние достаточно велика. Она должна быть такой, чтобы нарушить связь между рядами, но не молекулами. Если нарушена связь между молекулами, то вещество – двухмерная жидкость. По мере понижения температуры упорядочивается связь с молекулами, потом между слоями, потом появляется кристаллическая структура. Пример смектика – мыльный пузырь. Это два слоя кристаллов, разделенные жидкостью (Н2О).

В нематиках молекулы расположены в виде нитей (рис. 2.3).

Ориентация осей молекул параллельна, однако они не образуют слоев. Длинные оси лежат вдоль нитей.

В холестериках молекулы расположены в слоях, как и в смектиках, однако длинные оси параллельны плоскости слоев, а их расположение в пределах слоя напоминает нематик.

 
 

Слои тонкие, мономолекулярные. Направление ориентации длинных осей молекул в каждом последующем слое отклонено на 15 угловых минут по сравнению с предыдущим слоем. Эти отклонения суммируются по всей толщине вещества, что приводит к образованию спиральной молекулярной структуры кристалла.

 

Свойства жидких кристаллов

1. Двойное преломление света (характерное для твердых кристаллов).

Для холестерических – вращение плоскости поляризации. Если линейно-поляризованный свет проходит через слой холестерика перпендикулярно слоям, то направление колебаний электрического вектора световой волны будет повернуто влево или вправо (тип кристалла). Плоскость колебаний света также поворачивается влево или вправо. Угол вращения пропорционален толщине слоя вещества.

Достигнув поверхности жидкого кристалла, свет дисперсирует на две составляющие с круговой поляризацией в направлениях, обратных повороту электрических векторов. Одна составляющая проникает вглубь кристалла, другая отражается от его поверхности, что вызывает появление характерной окраски жидкокристаллического образца.

2. Наличие в жидких кристаллах дальнего порядка в ориентации молекул вызывает анизатропию электрических и магнитных свойств, присущую твердым кристаллам. Однако, в отличие от твердых тел, силы межмолекулярного взаимодействия здесь значительно слабее. Энергия деформации жидкого кристалла мала, поэтому их молекулярную структуру легко изменить под действием электрического и магнитного полей небольшой мощности.

3. Для изменения структуры достаточны также незначительные температурные колебания или механические воздействия на жидкий кристалл.

4. Структурным изменениям жидких кристаллов сопутствуют изменения оптических свойств, изменения степени пропускания и отражения света, двулучепреломления, оптической активности, окраски.

 



Поделиться:


Последнее изменение этой страницы: 2017-02-08; просмотров: 513; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.89.70.161 (0.019 с.)