Мейоз. Биологическое значение мейоза. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Мейоз. Биологическое значение мейоза.



Мейоз – самый характерный процесс в результате половых клеток. Он состоит из двух последовательных делений: 1) редукционное (Мейоз I); 2) эквационное (уравнительное) (Мейоз II). Сами процессы сходны с митозом. Цикл мейоза состоит из ряда стадий. Мейоз I состоит из: профазы I, метафазы I, анафазы I, телофазы I. В период между двумя делениями называется интеркинез. Не происходит удвоение хромосом, после наступает Мейоз II. Мейоз II состоит из: профазы II, метафазы II, анафазы II, телофазы II. Профаза I самая сложная стадия мейоза. Состоит из нескольких стадий: Лептонема характеризуется тем, что хромосомы из сетчатой структуры переформируются в отдельные тонкие нити, на этой стадии они оказываются как минимум двойные. Зигонема на этой стадии хромосомы начинают притягиваться друг к другу сходными участками. Взаимное притяжение – конъюгация в аналогичных хромосомах происходит сперилизация, утолщение, укорочение – это пахинема. В это время каждая хромосома состоит из двух хроматид, удерживаемых вмести одной центромерой две проканъюгирующие хромосомы образуя, бивалент (4 хроматида). Хроматиды двух гомологичных хромосом называют несестринскими. 4 хроматида образуют тетраду, это стадия наиболее удобная для изучения строения хромосом. Диплонема хромосомы перекручиваются, и некоторые участки их отталкиваются в область центромер, затем распространяются к концам хромосом при расхождении, хромосом происходит их раскручивание и образуется Х-образные фигуры – хиазмы. Диакинез характерно сильное укорочения и утолщение хромосом за счет сперализации (стадия толстых нитей). Уже на стадии диокинеза можно подсчитать число бивалентов = n. Метафаза I здесь биваленты располагаются в плоскости экватора клетки. Анафаза I гомологичные хромосомы расходятся к противоположным полюсам. Телофаза I в отличии от телофазы митоза после телофазы I мейоза не всегда наступает цитокинез после телофазы I период интеркинеза наступает мейоз II. Профаза II хромосомы сперализуются и становятся видны в световой микроскоп, в конце исчезают ядрышки и ядерная оболочка. Метафаза II хромосомы выстраиваются в экваториальной плоскости. Анафаза II хроматиды расходятся к полюсам. Телофаза II образуются дочерни ядра и начинается цитокинез. Из каждой клетки выступившей в мейозе после двух последовательных делений образуются 4 клетки с половым набором хромосом. Считают, что органоиды как в мейозе также как и в митозе распределяются в клетки случайно.

 

 

12.

Моногибридное скрещивание – это скрещивание, при котором родительские формы различаются по одной паре альтернативных признаков.

Особи, которые не дают в потомстве ращепления и сохраняют свои признаки в «чистом» виде, называют гомозиготными, а те, у которых в потомстве происходит ращепление,- гетерозиготными.

Совокупность всех признаков организма, начиная с внешних и кончая особенностями строения функционирования клеток, тканей и органов, называется фенотипом.

Признаки и свойства организма проявляются под контролем наследственных факторов, т.е. генов. Совокупность всех генов организма называют генотипом. Алле́ли (от греч. ἀλλήλων — друг друга, взаимно) — различные формы одного и того же гена, расположенные в одинаковых участках гомологичных хромосом и определяющие альтернативные варианты развития одного и того же признака. Домина́нтность (доминирование) — форма взаимоотношений между аллелями одного гена, при которой один из них (доминантный) подавляет (маскирует) проявление другого (рецессивного) и таким образом определяет проявление признака как у доминантных гомозигот, так и у гетерозигот.

РЕЦЕССИВНОСТЬ (от латинского recessus - отступление), форма взаимоотношений двух аллельных генов, при которой один из них (рецессивный) оказывает менее сильное влияние на соответствующий признак, чем другой (доминантный). Моногибридное скрещивание. Первый закон Менделя.

 

В опытах Менделя при скрещивании сортов гороха, которые имели желтые и зеленые семена, все потомство (т.е. гибриды первого поколения) оказалось с желтым семенами. При этом не имело значения, из какого именно семена (желтого или зеленого) выросли материнские (отцовские) растения. Итак, оба родителя в равной степени способны передавать свои признаки потомству.
Аналогичные результаты были обнаружены и в опытах, в которых во внимание брались другие признаки. Так, при скрещивании растений с гладкими и морщинистым семенами все потомство имело гладкие семена. При скрещивании растений с пурпурными и белыми цветками у всех гибридов оказались лишь пурпурные лепестки цветков и т. д.
Обнаруженная закономерность получила название первый закон Менделя, или закон единообразия гибридов первого поколения. Состояние (аллель) признака, проявляющегося в первом поколении, получило название доминантного, а состояние (аллель), которое в первом поколении гибридов не проявляется, называется рецессивным. «Задатки» признаков (по современной терминологии - гены) Г. Мендель предложил обозначать буквами латинского алфавита. Состояния, принадлежащие к одной паре признаков, обозначают одной и той же буквой, но доминантный аллель - большой, а рецессивный - маленькой.

Грегора Менделя по праву считают основателем современной генетики, и горох, с которым он экспериментировал, не менее известен. Его научные изыскания в монастырском фруктовом саду в городе Брюнн (сейчас Брно в Чехии), первоначально вызванные лишь интересом к земледелию, переросли в многолетнюю серию трудоемких опытов по скрещиванию растений, в результате чего Мендель пришел к выводу, что наследственность определяется генами.

Его работа была несложной, но кропотливой: он надевал на цветки гороха специальные мешочки для того, чтобы каждое растение опылялось лишь тщательно отобранной пыльцой. Затем, сравнивая признаки родительских и дочерних растений, он смог вывести законы наследования.

 

Классические эксперименты Менделя заключались в скрещивании двух линий гороха — высокорослой и низкорослой. Все дочерние растения первого поколения были высокими (а вовсе не низкого или среднего роста, как ожидалось). Однако при последующем скрещивании растений первого поколения между собой только три четверти дочерних растений второго поколения оказались высокорослыми, оставшиеся растения были низкорослыми. Чтобы объяснить результаты этих (и многих других) экспериментов, Мендель постулировал следующее:

— существует единица наследственности (Мендель называл ее «фактором», мы сейчас называем ее геном), и дочерний организм получает от каждого родителя по одному гену, кодирующему данный признак;

— если дочерний организм получает гены, отвечающие за альтернативные признаки, то один из этих генов будет доминантным и будет экспрессироваться (т. е. кодируемый этим геном признак проявится у организма), а другой будет рецессивным (т. е. не экспрессируемым).

В случае с горохом это означает, что каждое дочернее растение первого поколения получило и ген «высокорослости», и ген «низкорослости» — по одному от каждого родителя. Высокий рост потомства первого поколения указывает на доминантность гена «высокорослости». Однако в наследственном материале каждого дочернего растения первого поколения сохранился и неэкспрессировавшийся ген «низкорослости». В следующем поколении одно растение будет иметь в среднем два гена «высокорослости», два растения — один ген «высокорослости» и один ген «низкорослости» и одно растение — два гена «низкорослости»; оно-то и будет низкорослым. Руководствуясь этой схемой, Мендель смог объяснить многие особенности наследования, до этого остававшиеся загадкой: например, почему некоторые болезни (такие, как гемофилия) передаются через поколение или почему у кареглазых родителей могут быть голубоглазые дети.

 

13.

Наследование при дигибридном скрещивании. При моногибридном скрещивании родительские формы отличаются по одной паре признаков или аллелей гена. Совершенно очевидно, что в большинстве случаев организмы различаются по многим генам. Чтобы проанализировать наследование нескольких при­знаков, необходимо разложить эти сложные явления на более простые составные элементы, а затем представить весь процесс в целом. Так поступал в своей работе Г. Мендель. Он изучил наследование каждой пары признаков в отдельности, не обра­щая внимания на другие пары, а затем сопоставил и объединил все эти наблюдения.

Гибриды, полученные от скрещивания организмов, разли­чающихся двумя парами альтернативных признаков, были на­званы дигетерозиготами, тремя парами — тригетерозиготами,, многими признаками — полигетерозиготами, а скрещивания со­ответственно ди-, три- и полигибридными. Для дигибридного скрещивания Г. Мендель взял гомозиготные растения гороха, различающиеся одновременно по двум парам признаков. Мате­ринское растение имело гладкие семена желтой окраски, отцов­ские — морщинистые зеленые семена. Гибрид первого поколения этого скрещивания имеет гладкие и желтые семена. Следова­тельно, гладкая форма семени доминирует над морщинистой, а желтая — над зеленой. Обозначим аллели гладкой формой А, морщинистой а, аллели желтой окраски В, зеленой b. Гены, определяющие развитие разных пар признаков, называются неаллельными. В данном случае гены формы семени А и а неаллельны генам окраски b и В. Неаллельные гены обозна­чают разными буквами алфавита.

Родительские растения имели генотипы ААВВ и aabb и об­разовывали гаметы соответственно АВ и ab. В этом случае гено­тип гибрида f1 будет АаВЬ, т. е. он является дигетерозиготным. Для проверки генотипа гибрида и определения типов гамет, ко­торые он образует, Г. Мендель провел анализирующее скрещи­вание гибрида f1 с рецессивной родительской формой aabb. В f1, он получил четыре фенотипических класса: гладких жел­тых— 55, гладких зеленых — 51, морщинистых желтых — 49, морщинистых зеленых — 53. Анализируя наследование формы и окраски семян отдельно, ученый получил гладких семян 106, морщинистых 102, желтых 104, зеленых тоже 104, т. е. по форме и по окраске семян в F& наблюдается расщепление 1:1, как при моногибридном скрещивании. При рассмотрении наследования обоих пар признаков можно убедиться в том, что все четыре класса встречаются примерно с равной частотой, т. е. отноше­ние этих классов 1:1:1:1. При анализирующем скрещивании все гибриды получают от рецессивной родительской формы только рецессивные гены, в данном случае ab. Следовательно, фенотипы этих гибридов будут определяться генотипом гамет гибрида F1. Поскольку в F1 получено четыре разных класса и встречаются они с одинаковой частотой, значит, гибрид образует также четыре сорта гамет в равных количествах. Какие же это гаметы? Фенотип гладкий желтый мог получиться только при условии, если от гибрида F придут два доминантных гена АВ. Гладкие зеленые семена возникают за счет гамет с доминант­ным геном формы и рецессивным геном окраски Ab, морщини­стые желтые, наоборот, должны получить рецессивный ген формы, доминантный — окраски, т. е. аВ. Наконец, морщини­стые зеленые семена могли получить от гибрида только оба ре­цессивных гена ab. Таким образом, с помощью анализирующего скрещивания можно определить, что дигетерозигота (АаВЬ) об­разует четыре сорта гамет АВ, Ab, аВ и ab и притом в равных количествах.

Таким образом, неаллельные гены при образовании гамет свободно комбинируются между собой, благодаря чему образуются новые комбинации генов (Ab и ab) по сравнению с ро­дительскими формами и новые комбинации признаков у гибридов рь — гладкие зеленые семена и морщинистые желтые. Появле­ние новых комбинаций признаков в результате скрещивания получило название комбинативной изменчивости. Комбинативная изменчивость играет большую роль в эволюции, так как она дает новые сочетания приспособительных призна­ков, возникающих при скрещивании. Она постоянно исполь­зуется и в селекции для улучшения пород животных и сортов растений путем скрещиваний.

 

 

14.

Мутация – это внезапно наследуемые изменения генетического материала которые могут возникнуть спонтанно либо могут быть индуцированны внешним воздействием на организм. Процесс возникновения мутации называется мутагенезом.

Существует следующая классификация мутаций:

 

· По характеру изменения генома мутации подразделяются:

Генные

Хромосомные

Геномные (изменение числа хромосом)

 

· По происхождению:

В спонтанные (без видимых причин)

Индуцированные (вызваны искусственно)

 

· По проявлению:

Доминантные

Рецессивные

 

Основное внимание при изучении генных мутаций уделяют нуклеотидам ДНК.

Генные мутации подразделяют на следующие группы:

Ø Транзиция - замена азотистых оснований: пуриновых на пуриновые, пиримидиновых на пиримидиновые. При этом изменяется только тот кодон, в котором произошли танзиции.

Ø Трансверсия - замена пуриновых оснований на пиримидиновые или пиримидиновые на пуриновые.

Ø Вставки – происходит вставка линий пары нуклеотидов

Ø Выпадение – выпадение пары нуклеотидов

Генные мутации обычно затрачивают единичные гены, по этому они образуются наиболее часто. С ними связан большинство изменений: морфологических, биохимических, физиологических признаков организма.

 

15.



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 764; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.136.170 (0.026 с.)