Эволюция и классификация языков программирования 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Эволюция и классификация языков программирования



 

В развитии инструментального программного обеспечения рассматривают пять поколений языков программирования (ЯП). Языки программирования как средство общения человека с ЭВМ от поколения к поколению улучшали свои характеристики, становясь все более доступными в освоении непрофессионалам.
Первые три поколения ЯП характеризовались более сложным набором зарезервированных слов и синтаксисом. Языки четвертого поколения все еще требуют соблюдения определенного синтаксиса при написании программ, но он значительно легче для освоения. Естественные ЯП, разрабатываемые в настоящее время, составят пятое поколение и позволят определять необходимые процедуры обработки информации, используя предложения языка, весьма близкого к естественному и не требующего соблюдения особого синтаксиса (табл. 2)

Таблица 2. Поколения ЯП
Поколения Языки программирования Характеристика
Первое Машинные Ориентированы на использование в конкретной ЭВМ, сложны в освоении, требуют хорошего знания архитектуры ЭВМ
Второе Ассемблеры, макроассемблеры Более удобны для использования, но по-прежнему машинно-зависимы
Третье Языки высокого уровня Мобильные, человеко-ориентированные, проще в освоении
Четвёртое Непроцедурные, объектно-ориентированные, языки запросов, параллельные Ориентированы на непрофессионального пользователя и на ЭВМ с параллельной архитектурой
Пятое Языки искусственного интеллекта, экспертных систем и баз знаний, естественные языки Ориентированы на повышение интеллектуального уровня ЭВМ и интерфейса с языками


ЯП первого поколения представляли собой набор машинных команд в двоичном (бинарном) или восьмеричном формате, который определялся архитектурой конкретной ЭВМ. Каждый тип ЭВМ имел свой ЯП, программы на котором были пригодны только для данного типа ЭВМ. От программиста при этом требовалось хорошее знание не только машинного языка, но и архитектуры ЭВМ.
Второе поколение ЯП характеризуется созданием языков ассемблерного типа (ассемблеров, макроассемблеров), позволяющих вместо двоичных и других форматов машинных команд использовать их мнемонические символьные обозначения (имена). Являясь существенным шагом вперед, ассемблерные языки все еще оставались машинно-зависимыми, а программист все также должен был быть хорошо знаком с организацией и функционированием аппаратной среды конкретного типа ЭВМ. При этом ассемблерные программы все так же затруднительны для чтения, трудоемки при отладке и требуют больших усилий для переноса на другие типы ЭВМ. Однако и сейчас ассемблерные языки используются при необходимости разработки высокоэффективного программного обеспечения (минимального по объему и с максимальной производительностью).
Третье поколение ЯП начинается с появления в 1956 г. первого языка высокого уровня - Fortran, разработанного под руководством Дж. Бэкуса в фирме IBM. За короткое время Fortran становится основным ЯП при решении инженерно-технических и научных задач. Первоначально Fortran обладал весьма ограниченными средствами обеспечения работы с символьной информацией и с системой ввода-вывода. Однако постоянное развитие языка сделало его одним из самых распространенных ЯВУ на ЭВМ всех классов - от микро- до суперЭВМ, а его версии используются и для вычислительных средств нетрадиционной параллельной архитектуры.
Вскоре после языка Fortran появились такие ныне широко известные языки, как Algol, Cobol, Basic, PL/1, Pascal, APL, ADA, C, Forth, Lisp, Modula и др. В настоящее время насчитывается свыше 2000 различных языков высокого уровня.
Языки четвертого поколения носят ярко выраженный непроцедурный характер, определяемый тем, что программы на таких языках описывают только Что, а не как надо сделать. В программах формируются скорее соотношения, а не последовательности шагов выполнения алгоритмов. Типичными примерами непроцедурных языков являются языки, используемые для задач искусственного интеллекта (например, Prolog, Langin). Так как непроцедурные языки имеют минимальное число синтаксических правил, они значительно более пригодны для применения непрофессионалами в области программирования.
Второй тенденцией развития ЯП четвертого поколения являются объектно-ориентированные языки, базирующиеся на понятии программного объекта, впервые использованного в языке Simula-67 и составившего впоследствии основу известного языка SmallTalk. Программный объект состоит из структур данных и алгоритмов, при этом каждый объект знает, как выполнять операции со своими собственными данными. На самом деле, различные объекты могут пользоваться совершенно разными алгоритмами при выполнении действий, определенных одним и тем же ключевым словом ("так называемое свойство полиморфизма). Например, объект с комплексными числами и массивами в качестве данных будет использовать различные алгоритмы для выполнения операции умножения. Такими свойствами обладают объектно-ориентированные Pascal, Basic, C++, SmallTalk, Simula, Actor и ряд других языков программирования.
Третьим направлением развития языков четвертого поколения можно считать языки запросов, позволяющих пользователю получать информацию из баз данных. Языки запросов имеют свой особый синтаксис, который должен соблюдаться, как и в традиционных ЯП третьего поколения, но при этом проще в использовании. Среди языков запросов фактическим стандартом стал язык SQL (Structured Query Language).
И, наконец, четвертым направлением развития являются языки параллельного программирования (модификация ЯВУ Fortran, языки Occam, SISAL, FP и др.), которые ориентированы на создание программного обеспечения для вычислительных средств параллельной архитектуры (многомашинные, мультипроцессорные среды и др.), в отличие от языков третьего поколения, ориентированных на традиционную однопроцессорную архитектуру.
К интенсивно развивающемуся в настоящее время пятому поколению относятся языки искусственного интеллекта, экспертных систем, баз знаний (InterLisp, ExpertLisp, IQLisp, SAIL и др.), а также естественные языки, не требующие освоения какого-либо специального синтаксиса (в настоящее время успешно используются естественные ЯП с ограниченными возможностями - Clout, Q&A, HAL и др.).

Классификация:
Машинно – ориентированные языки
– это языки, наборы операторов и изобразительные средства которых существенно зависят от особенностей ЭВМ (внутреннего языка, структуры памяти и т.д.). Машинно –ориентированные языки позволяют использовать все возможности и особенности Машинно – зависимых языков:
- высокое качество создаваемых программ (компактность и скорость выполнения);
- возможность использования конкретных аппаратных ресурсов;
- предсказуемость объектного кода и заказов памяти;
- для составления эффективных программ необходимо знать систему команд и особенности функционирования данной ЭВМ;
- трудоемкость процесса составления программ (особенно на машинных языках и ЯСК), плохо защищенного от появления ошибок;
- низкая скорость программирования;
- невозможность непосредственного использования программ, составленных на этих языках, на ЭВМ других типов.
Машинно-ориентированные языки по степени автоматического программирования подразделяются на классы.

^ 2.1.1. Машинный язык
Как я уже упоминал, в введении, отдельный компьютер имеет свой определенный Машинный язык (далее МЯ), ему предписывают выполнение указываемых операций над определяемыми ими операндами, поэтому МЯ является командным. Однако, некоторые семейства ЭВМ (например, ЕС ЭВМ, IBM/370/ и др.) имеют единый МЯ для ЭВМ разной мощности. В команде любого из них сообщается информация о местонахождении операндов и типе выполняемой операции.
В новых моделях ЭВМ намечается тенденция к повышению внутренних языков машинно – аппаратным путем реализовывать более сложные команды, приближающиеся по своим функциональным действиям к операторам алгоритмических языков программирования.

^ 2.1.2. Языки Символического Кодирования
Продолжим рассказ о командных языках, Языки Символического Кодирования (далее ЯСК), так же, как и МЯ, являются командными. Однако коды операций и адреса в машинных командах, представляющие собой последовательность двоичных (во внутреннем коде) или восьмеричных (часто используемых при написании программ) цифр, в ЯСК заменены на символы (идентификаторы), форма написания которых помогает программисту легче запоминать смысловое содержание операции. Это обеспечивает существенное уменьшение числа ошибок при составлении программ.
Использование символических адресов – первый шаг к созданию ЯСК. Команды ЭВМ вместо истинных (физических) адресов содержат символические адреса. По результатам составленной программы определяется требуемое количество ячеек для хранения исходных промежуточных и результирующих значений. Назначение адресов, выполняемое отдельно от составления программы в символических адресах, может проводиться менее квалифицированным программистом или специальной программой, что в значительной степени облегчает труд программиста.

2.1.3. Автокоды
Есть также языки, включающие в себя все возможности ЯСК, посредством расширенного введения макрокоманд -они называются Автокоды.
В различных программах встречаются некоторые достаточно часто использующиеся командные последовательности, которые соответствуют определенным процедурам преобразования информации. Эффективная реализация таких процедур обеспечивается оформлением их в виде специальных макрокоманд и включением последних в язык программирования, доступный программисту. Макрокоманды переводятся в машинные команды двумя путями – расстановкой и генерированием. В постановочной системе содержатся «остовы» - серии команд, реализующих требуемую функцию, обозначенную макрокомандой. Макрокоманды обеспечивают передачу фактических параметров, которые в процессе трансляции вставляются в «остов» программы, превращая её в реальную машинную программу.
В системе с генерацией имеются специальные программы, анализирующие макрокоманду, которые определяют, какую функцию необходимо выполнить и формируют необходимую последовательность команд, реализующих данную функцию.
Обе указанных системы используют трансляторы с ^ ЯСК и набор макрокоманд, которые также являются операторами автокода.
Развитые автокоды получили название Ассемблер ы. Сервисные программы и пр., как правило, составлены на языках типа Ассемблер. Более полная информация об языке Ассемблер а см. ниже.

2.1.4. Макрос
Язык, являющийся средством для замены последовательности символов описывающих выполнение требуемых действий ЭВМ на более сжатую форму - называется Макрос (средство замены).
В основном, Макрос предназначен для того, чтобы сократить запись исходной программы. Компонент программного обеспечения, обеспечивающий функционирование макросов, называется макропроцессором. На макропроцессор поступает макроопределяющий и исходный текст. Реакция макропроцессора на вызов-выдача выходного текста.
Макрос одинаково может работать, как с программами, так и с данными.

^ 2.2. Машинно – независимые языки
Машинно – независимые языки – это средство описания алгоритмов решения задач и информации, подлежащей обработке. Они удобны в использовании для широкого круга пользователей и не требуют от них знания особенностей организации функционирования ЭВМ и ВС.
Подобные языки получили название высокоуровневых языков программирования. Программы, составляемые на таких языках, представляют собой последовательности операторов, структурированные согласно правилам рассматривания языка(задачи, сегменты, блоки и т.д.). Операторы языка описывают действия, которые должна выполнять система после трансляции программы на машинном языке.
Т.о., командные последовательности (процедуры, подпрограммы), часто используемые в машинных программах, представлены в высокоуровневых языках отдельными операторами. Программист получил возможность не расписывать в деталях вычислительный процесс на уровне машинных команд, а сосредоточиться на основных особенностях алгоритма.

^ 2.2.1. Проблемно – ориентированные языки
С расширением областей применения вычислительной техники возникла необходимость формализовать представление постановки и решение новых классов задач. Необходимо было создать такие языки программирования, которые, используя в данной области обозначения и терминологию, позволили бы описывать требуемые алгоритмы решения для поставленных задач, ими стали проблемно – ориентированные языки. Эти языки, языки ориентированные на решение определенных проблем, должны обеспечить программиста средствами, позволяющими коротко и четко формулировать задачу и получать результаты в требуемой форме.

 

Проблемных языков очень много, например:
^ Фортран, Алгол – языки, созданные для решения математических задач;
Simula, Слэнг - для моделирования;
Лисп, Снобол – для работы со списочными структурами.
Об этих языках я расскажу дальше.
^ 2.2.2. Универсальные языки

Универсальные языки были созданы для широкого круга задач: коммерческих, научных, моделирования и т.д. Первый универсальный язык был разработан фирмой IBM, ставший в последовательности языков Пл/1. Второй по мощности универсальный язык называется Алгол-68. Он позволяет работать с символами, разрядами, числами с фиксированной и плавающей запятой. Пл/1 имеет развитую систему операторов для управления форматами, для работы с полями переменной длины, с данными организованными в сложные структуры, и для эффективного использования каналов связи. Язык учитывает включенные во многие машины возможности прерывания и имеет соответствующие операторы. Предусмотрена возможность параллельного выполнение участков программ.
Программы в ^ Пл/1 компилируются с помощью автоматических процедур. Язык использует многие свойства Фортрана, Алгола, Кобола. Однако он допускает не только динамическое, но и управляемое и статистическое распределения памяти.

^ 2.2.3. Диалоговые языки
Появление новых технических возможностей поставило задачу перед системными программистами – создать программные средства, обеспечивающие оперативное взаимодействие человека с ЭВМ их назвали диалоговыми языками.
Эти работы велись в двух направлениях. Создавались специальные управляющие языки для обеспечения оперативного воздействия на прохождение задач, которые составлялись на любых раннее неразработанных (не диалоговых) языках. Разрабатывались также языки, которые кроме целей управления обеспечивали бы описание алгоритмов решения задач.
Необходимость обеспечения оперативного взаимодействия с пользователем потребовала сохранения в памяти ЭВМ копии исходной программы даже после получения объектной программы в машинных кодах. При внесении изменений в программу с использованием диалогового языка система программирования с помощью специальных таблиц устанавливает взаимосвязь структур исходной и объектной программ. Это позволяет осуществить требуемые редакционные изменения в объектной программе.

Одним из примеров диалоговых языков является ^ Бэйсик.
Бэйсик использует обозначения подобные обычным математическим выражениям. Многие операторы являются упрощенными вариантами операторов языка Фортран. Поэтому этот язык позволяет решать достаточно широкий круг задач.

^ 2.2.4. Непроцедурные языки
Непроцедурные языки составляют группу языков, описывающих организацию данных, обрабатываемых по фиксированным алгоритмам (табличные языки и генераторы отчетов), и языков связи с операционными системами.
Позволяя четко описывать как задачу, так и необходимые для её решения действия, таблицы решений дают возможность в наглядной форме определить, какие условия должны быть выполнены прежде чем переходить к какому-либо действию. Одна таблица решений, описывающая некоторую ситуацию, содержит все возможные блок-схемы реализаций алгоритмов решения.
Табличные методы легко осваиваются специалистами любых профессий.
Программы, составленные на табличном языке, удобно описывают сложные ситуации, возникающие при системном анализе.

 

 



Поделиться:


Последнее изменение этой страницы: 2016-12-17; просмотров: 2475; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.93.59.171 (0.027 с.)